
To the Graduate Council:

I am submitting herewith a dissertation written by Tabitha K Samuel entitled

“Using Human Interaction with Natural Language Processing Techniques to Reinforce

Vocabulary Comprehension and Usage.” I have examined the final paper copy of

this dissertation for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major

in Computer Science.

Dr. Michael W. Berry, Major Pro-

fessor

We have read this dissertation
and recommend its acceptance:

Committee Member 1

Committee Member 2

Committee Member 3

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

To the Graduate Council:

I am submitting herewith a dissertation written by Tabitha K Samuel entitled

“Using Human Interaction with Natural Language Processing Techniques to Reinforce

Vocabulary Comprehension and Usage.” I have examined the final electronic copy of

this dissertation for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major

in Computer Science.

Dr. Michael W. Berry, Major Professor

We have read this dissertation
and recommend its acceptance:

Committee Member 1

Committee Member 2

Committee Member 3

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Using Human Interaction with

Natural Language Processing

Techniques to Reinforce

Vocabulary Comprehension and

Usage

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Tabitha K Samuel

May 2025

© by Tabitha K Samuel, 2025

All Rights Reserved.

ii

To my grandmother, Sita

iii

Acknowledgments

I want to thank my advisor, Dr. Michael W. Berry, for, first and foremost, encouraging

me to embark on this compelling journey and for being a kind and supportive mentor

throughout. I would also like to thank Dr. Jillian McCarthy for helping me learn

about the science of language. A special thanks to Dr. Amir Sadovnik and Dr.

Audris Mockus for helping me scope and correctly frame my research undertaking.

Thank you to Readworks for allowing me to make liberal use of their educational

K-12 material, which formed the experiment material for this dissertation.

I am grateful to my colleagues at the National Institute for Computational Sciences

for their patience as I balanced a full-time job with completing this degree. I will

always be humbled by the support of my colleagues and mentors in the Research

Computing community, in particular, Craig Stewart, Rich Knepper, Winona Snapp-

Childs, Shava Smallen, Shafaq Chaudhry, Greg Peterson, Dana Brunson, Rachana

Ananthakrishan, Kathryn Kelley, Ruth Marinshaw, Anthony Skjellum, Dhruva

Chakravorty, Tim Boerner and Alaine Martaus. Your continuous encouragement

and reminders to ‘just get it done’ were instrumental in this process.

To my aunt, Shobhana Chelliah, a computational linguist specializing in endan-

gered languages, thank you for the many enlightening conversations about language

and syntax. Thanks to my Manohar and Mallika Samuel, my parents, who always

encouraged me to buck traditions and follow my dreams. Finally, none of this would

have been possible without my husband, Jim Berrier - thank you for keeping me fed,

loved, and sane.

iv

“Reading is the key that opens doors to many good things in life.

Reading shaped my dreams, and more reading helped me

make my dreams come true.”

- Ruth Bader Ginsberg

v

Abstract

This dissertation proposes SENCE: SENtence Curation and Evaluation - a Natural

Language Processing (NLP) aid to be used in an educational setting for children with

developmental language disorders or who are hearing impaired. SENCE is designed

as an AI-augmented tool for educators such as general and special education teachers

and practicing school-based speech-language pathologists.While several commercially

available products incorporate NLP techniques for teaching adults language skills, the

field is still nascent for incorporating NLP into teaching aids for children with learning

disorders. SENCE uses NLP techniques to reinforce vocabulary comprehension and

usage in children. Additionally, it integrates human interaction with NLP techniques,

allowing domain specialists to improve results before they are presented to students.

SENCE uses off-the-shelf NLP libraries such as spaCy and Stanza in combination

with NLP techniques such as lemmatization, part-of-speech tagging, and vocabulary

similarity. These methods are integrated to identify key vocabulary words and

sentences using those keywords. An evaluation is created based on these keywords

and sentences. SENCE thereby creates an automated process to gauge students’

vocabulary comprehension over time. The evaluations can be shared between classes

and instructors. Further, students can be quickly assessed for retention of words

taught earlier in the school year. Through these methods, SENCE provides a novel

and easy-to-use NLP-powered application for non-computer scientists to use NLP for

everyday classroom tasks.

vi

Table of Contents

1 Introduction 1

1.1 Motivation . 2

2 Background Work in Audiology and Speech Pathology 5

3 Background Work in Natural Language Processing 7

4 Research Problem 11

4.1 Accessible interfaces to an NLP solution 11

4.2 Blending human input with NLP responses 11

4.3 Assessing how NLP tools can parse different media formats 12

4.4 Scaffolding complexity to reinforce vocabulary knowledge 12

5 Proposed Architecture 14

5.1 Corpus parsing and storage . 14

5.2 Lesson-specific keyword and sentence selection and storage 15

5.3 Major Libraries and Software Used 18

6 Database Design 21

7 Description of Methodology with Results 25

7.1 Corpus parsing and storage . 25

7.1.1 SENCE corpus parsing . 27

7.1.2 SENCE text parsing . 28

vii

7.1.3 Error Checking . 29

7.1.4 Collection constraints . 29

7.2 Keyword extraction . 30

7.2.1 Evaluation of different keyword extraction methods 35

7.2.2 Error Checking . 41

7.2.3 Collection Constraints . 41

7.3 SENCE Sentence retrieval based on keywords 42

7.3.1 Choice of lemmatizer . 44

7.3.2 Error checking . 45

7.3.3 Collection Constraints . 45

7.4 Sort Criteria . 45

7.4.1 Sort type: Sentence length . 47

7.4.2 Sort type: Number of keywords 48

7.4.3 Sort type: Syntactic Dependency of Keyword relative to the

Sentence . 50

7.4.4 Sort type: Number of Tier 2 and 3 words in sentence 53

7.4.5 Comparison of sort types . 55

7.4.6 Flow of Operations . 59

7.5 Storing sentences based on search criteria 65

7.5.1 Identifying and replacing keywords in a sentence with dashes . 66

7.6 Assessing students’ vocabulary comprehension 69

7.6.1 Displaying results . 71

7.7 Evaluation of keyword and sentence extraction from different media . 71

7.7.1 Results with Storybook texts 71

7.7.2 Television shows . 75

8 Conclusions and Broader Impacts 78

8.1 Broader Impacts . 81

9 Future Work 83

viii

Bibliography 85

A Raw Text from story books and television show transcripts 93

A.1 Raw Text from Project Gutenberg’s The Tale of Peter Rabbit transcript 93

A.2 Raw Text from Continue to Know with WHRO - Rocks! transcript . 97

A.3 Raw Text from WHROTV - Bill Nye the Science Guy - Photosynthesis 101

A.4 Raw text from Daniel Tiger - Baby is Here: At the hospital transcript 104

B Keywords comparison from different Keyterm extraction packages 107

C Text of passages used for Keyword extraction comparison in Chapter

7 110

C.1 Water Takes Three Forms, Grade 2, Topic area: Science 110

C.2 Light and Objects, Grade 3, Topic area: Science 111

C.3 American Government - James Madison: A Man with a Plan, Grade

4, Topic area: Social Studies . 111

D SENCE code 113

Vita 221

ix

Nomenclature

MongoDB Database collection and column names are italicized

Code Python file names and code are in teletype font

x

Chapter 1

Introduction

This dissertation proposes SENCE: SENtence Curation and Evaluation - a

natural language processing aid to be used in an educational setting for children,

including those with a developmental language disorder or who have a hearing

impairment [20], or who are hearing impaired. SENCE is meant to be used in a

vocabulary-teaching setting, where children are taught expanded vocabulary through

texts and other media. SENCE is meant to be used at the end of a lesson to

reinforce the meaning of words taught during the lesson. It assesses if the student

can correctly use the newly introduced word in familiar (text from the lesson being

currently discussed) and unfamiliar (use the word correctly from a text unfamiliar to

the student) settings.

SENCE also has the capacity to assess the student’s grasp of vocabulary meaning

through progressively simple to complex sentences. At the end of the lesson, the

instructor can get an individualized report of each student’s progress of mastering

the vocabulary taught that day. SENCE can also be used to assess and reinforce

words taught in previous lessons, so that students have multiple pathways to retaining

knowledge of vocabulary as they progress through different words over time.

SENCE is meant to be a Natural Language Processing (NLP)-augmented

educational assistive tool and not intended to replace educators in teaching students

1

to learn vocabulary. The tool has primarily been designed to work with students in

grades 3 - 5 but can also be scaled for other learning groups. The overarching goals

of SENCE are:

• To lower the manual intervention for educators in identifying important words

and associated sentences from a given text.

• To assist educators in identifying and grouping key sentences into simple,

medium, and complex sentences based on four different sorting criteria.

• To aid a student in learning the meaning of a word as it is applied in a sentence

at their own pace.

To achieve these goals, SENCE has a four-pronged approach:

• Create an accessible interface for non-NLP experts to interface with an NLP

program.

• Assess how an intelligent system can receive and learn from human edits.

• Assess the efficiency of an AI-assisted program to parse different formats of text.

• Provide individualized reinforcement of correct vocabulary usage.

SENCE was created with the help of open-sourced natural language processing

libraries such as Natural Language Toolkit (NLTK) [5], SpaCy [22], and Stanford

Parser [27]. This was an intentional design choice so as to make this tool accessible

and free to all populations while at the same time using libraries that have already

undergone rigorous testing and validation by the software community.

1.1 Motivation

SENCE is built on the foundations of Vocabulary Coordinator (VocaCoord) [21].

VocaCoord is the result of a long-term collaborative project between Dr. Michael

2

Berry [32], Professor of Computer Science at the Department of Electrical Engineering

and Computer Science, University of Tennessee, Knoxville, and Dr. Jillian McCarthy

[11], Associate Professor in the College of Health Professions and Director of the UT

Augmentative and Alternative Communication, Language, and Literacy (UT-AACL)

laboratory [58] at the University of Tennesse, Health Science Center. VocaCoord is

a novel software that uses speech-to-text to display unique vocabulary in real-time.

It was built to assist children who use augmentative and alternative communication

(AAC) [36] to learn vocabulary faster. AAC includes any communication method that

supplements (augments) or replaces (provides an alternative to) the usual methods of

speech and/or writing where these are impaired or insufficient to meet the individual’s

needs. AAC may also have a role in which the child has difficulty learning speech and

language. In this and other cases, children may use AAC in the short to medium term

or as their life-long means of communication. While AAC is usually thought of as an

‘output’ system, a means for someone to express themselves, AAC can also be used to

support the person’s understanding of language and communication [37]. VocaCoord

serves as a teaching aid to display real-time visual representations of words being

taught in a lesson. VocaCoord takes academic vocabulary words spoken by a teacher

and displays them in written form, providing a visually static text representation of

a dynamic and very temporary auditory event, along with a definition and a picture

of the word. This additional visual cue aids the student in remembering the meaning

of the word faster as opposed to only the audio cue.

SENCE is a variant of VocaCoord. It automates some of the manual intervention

processes that VocaCoord relies on for every lesson. While VocaCoord provides an

additional visual cue to reinforce the knowledge of a word, SENCE uses NLP methods

to provide individual reinforcement and assessment of continued memory of word

meaning. It focuses on a child’s progress in understanding the word being taught in

familiar and unfamiliar sentences, as well as in a wide variety of simple to complex

sentences. With VocaCoord, SENCE can provide an all-around, comprehensive aid

to reinforce the meaning of words and assess a child’s grasp and retention of a

3

word over time in multiple contexts. Another manner in which SENCE builds on

VocaCoord is while VocaCoord provides a uniform platform for all students and

does not change prompts based on the student’s knowledge of vocabulary, SENCE

automatically adjusts the type and complexity of sentences introduced to a student

based on their comprehension level. This individualized attention allows students to

learn at their own pace without feeling discouraged. At the same time, instructors

can now assess each student’s area of vocabulary strength and weakness and provide

feedback as required.

The building of SENCE also provides an assessment of off-the-shelf NLP tools. In

building SENCE, several off-the-shelf NLP packages such as SpaCY [22], NLTK [5],

Stanford Parser [27], Stanza [43], Yake [9], Rake [45], Bert [12], and TextRank[30]

were evaluated for accuracy in syntactic and semantic vocabulary parsing. A detailed

analysis of this comparison is discussed in Section 7.2.1.

Finally, SENCE provides a pilot example of stitching several off-the-shelf NLP

libraries together to form a comprehensive, user-friendly NLP tool. Not all tools

perform all language tasks well. SENCE shows which packages outperform others

for specific language tasks, and how they can work collaboratively to form a

comprehensive educational aid for vocabulary learning.

The rest of this dissertation is laid out as follows: Chapter 2 and Chapter 3

discuss background work in audiology and speech pathology, and NLP. Chapter 4

describes the research problem addressed; Chapter 5 and Chapter 6 discuss SENCE

architecture and database design. Chapter 7 is an extensive discussion of SENCE

methods and results obtained, while Section 7.7 discusses results from media other

than classroom lesson-based texts. Finally, Chapter 8 discussion conclusions of this

work and its broader impacts, and Chapter 9 discusses proposed future work.

4

Chapter 2

Background Work in Audiology

and Speech Pathology

According to the National Institute of Health’s National Institute on Deafness

and Other Communication Diseases (NIDCD) fact sheet [60] on Specific Language

Impairment (SLI), Specific language impairment (SLI) is a communication disorder

that interferes with the development of language skills in children who have no hearing

loss. SLI can affect a child’s speaking, listening, reading, and writing. SLI is also

called developmental language disorder, language delay, or developmental dysphasia.

It is one of the most common developmental disorders, affecting approximately 7

to 10 percent of children in kindergarten. According to Bishop in ‘What Causes

Specific Language Impairment in Children?’ [6], Children who are unable to speak

because of physical disability, and those who cannot hear what others say to them,

will nevertheless learn to communicate by other means, provided they are exposed

to alternative systems of communication such as sign language. There are, however,

exceptions to this general rule of speedy and robust language acquisition: Children

with specific language impairment (SLI) have major problems in learning to talk,

despite showing normal development in all other areas. Thus, a typical 7- or 8-year-

old child with SLI may talk like a 3-year-old, using simplified speech sounds, with

5

words strung together in short, ungrammatical strings—e.g., “me go there,” rather

than “I went there.” From Storkel et al [55], Children with SLI are slow to learn new

words, needing 2–3 times as many exposures as their peers [19].Vocabulary deficits,

in turn, affect reading decoding and comprehension [38], leading these children to

fall further behind the academic achievement of their peers [35]. In addition to this

academic cost, there is a social cost to vocabulary deficits, with low vocabulary being

linked to low popularity among peers [18]. The previously mentioned Storkel study

presented the results of a preliminary clinical trial with twenty-seven kindergarten

children with SLI. The trial used interactive book reading to teach 30 new words.

Word learning was assessed at 4 points during treatment through a picture naming

test. In this study, they determined that 36 exposures to a word were the ideal

number of exposures for a child with SLI to learn the meaning of a word.

6

Chapter 3

Background Work in Natural

Language Processing

Mimicking the ways humans learn and understand language has been one of the

greatest challenges of Natural Language Processing (NLP). Not only does the system

have to learn grammar, but more importantly, the system has to learn context. Much

work has been done in NLP in the areas of not only teaching a machine, words but

also grammar and context. Word Sense Disambiguation (WSD) [29] is the method of

teaching a system the actual meaning of a word according to its context. In Rahman

et. al, [44] an unsupervised based learning method to detect the correct sense of a

word in a sentence is presented. To correctly classify word sense, the method uses

WordNet [31], NLTK [5], and co-location scores. As an extension to this, Jordan and

Mitchell [26] provide an NLP approach to author and mark short answers in freeform

text. They used the UK’s Open University’s Intelligent Assessment Technologies

(IAT) engine [24], coupled with the OpenMark assessment system [8] to grade free-

form text answers from students. This was accomplished by creating human-curated

templates that the machine would then use to grade students’ answers. An example

of a template that is based on the answer ’Lava erupts from the mountain.’ is shown

in Figure 3.1.

7

mountain

flows
erupts

comes down

lava

Figure 3.1: Example of an answer template.

The IAT system breaks down the answer from the student into phrases and then

compares how closely the answer matches the corresponding human/Subject Matter

Expert curated template. Each imperfect answer is responded to with feedback from

the OpenMark tool, with prompts towards the correct answer. If a student is close

to the right answer, the Open Mark tool allows the student to retry answering the

question a preset number of times. Again, these prompts are human-created, and the

system picks the prompts based on the answer provided by the student.

There have been significant strides in the area of AI tools to assist in NLP tasks.

Primary of them is BERT [12]. BERT (Bidirectional Encoder Representations from

Transformers) applies the bidirectional training of Transformer, a popular attention

model, to language modeling. This is in contrast to previous efforts, which looked

at a text sequence either from left to right or combined left-to-right and right-to-left

training. Horev in [23] shows that a language model that is bi-directionally trained

can have a more profound sense of language context and flow than single-direction

language models. In [25], Jawahar et al. discuss the suitability of BERT for various

NLP tasks such as parsing phrasal syntax, surface tasks such as sentence length and

presence of word in a sentence, syntactic tasks such as the depth of the syntactic tree,

and semantic tasks such as checking for tense and sensitivity to random replacement

of a noun or verb.

Outside of BERT, there have been several other NLP tools to assist in feature

extraction tasks. Some of them are RAKE, YAKE, TextRank, and SgRank [10].

Rapid Keyword Extraction algorithm (RAKE) uses co-location and co-occurance of

8

words to extract high-frequency words. Yet Another Extraction Algorithm (YAKE)

is a lightweight, unsupervised automatic keyword extraction method that relies on

statistical text features extracted from individual documents to identify the most

relevant keywords in the text. After pre-processing the text, YAKE uses five features

- TCase (Casing), TPos (Term Position), TFNorm (Term Frequency Normalization),

TRel (Term Related To Context), and TSent (Term Different Sentence) to rank

keyterms [53]. TextRank, based on the popular Google’s PageRank algorithm [39], is

a graph-based keyterm extraction algorithm. In this algorithm, text units that best

identify the text at hand are chosen as vertices, and the relationship between them

are the edges. The graph-based ranking algorithm is then iterated until convergence

and the top x vertices are picked as keyterms after post-processing. SGRank, based

on TextRank also uses unsupervised learning, and combines graphical and statistical

methods to identify keywords in a given text.

The CoreNLP [28] is a major milestone in the evolution of natural language

parsers due to its high accuracy, extensive language support, flexibility in output

formats, well-documented features, and robust research-backed foundation. A natural

language parser is a program that works out the grammatical structure of sentences,

for instance, which groups of words go together (as phrases) and which words are the

subject or object of a verb. The CoreNLP comes from the Stanford NLP Group

- a part of the Stanford AI Lab (SAIL). It includes members of the Linguistics

Department, the Computer Science Department, the Psychology Department, and the

Graduate School of Education, among others who work together on algorithms that

allow computers to process, generate, and understand human languages. CoreNLP is

a one-stop shop for natural language processing written in Java. It enables users to

derive linguistic annotations for text, including token and sentence boundaries, parts

of speech, named entities, numeric and time values, dependency and constituency

parses, co-reference, sentiment, quote attributions, and relations. CoreNLP currently

supports eight languages: Arabic, Chinese, English, French, German, Hungarian,

Italian, and Spanish.

9

spaCy, is a popular Python library that contains the linguistic data and algorithms

that can process natural language texts. spaCy is easy to use because it provides

container objects that represent elements of natural language texts, such as sentences

and words. These objects, in turn, have attributes that represent linguistic features,

like parts of speech. spaCy offers pretrained models for English, German, Greek,

Spanish, French, Italian, Lithuanian, Norwegian Bokmäl, Dutch, and Portuguese. In

addition, spaCy offers built-in visualizers that can be invoked programmatically to

generate a graphic of the syntactic structure of a sentence or named entities in a

document. The spaCy library also natively supports advanced NLP features such as

word and sentence vectors [61].

10

Chapter 4

Research Problem

The rapid advancements in NLP have paved the way for developing intelligent systems

capable of understanding and generating human language. However, there remains a

significant gap in making these technologies accessible and usable by individuals who

are not experts in AI or computer science. The proposed research aims to address

this gap by focusing on four key areas:

4.1 Accessible interfaces to an NLP solution

SENCE creates a human-friendly interface to a series of interlinked NLP solutions.

Through multiple prompts that mimic human behavior, SENCE guides a user who

is unfamiliar with AI through word and sentence selection prompts, thereby creating

an easy-to-use, easily navigable system to create personalized lesson aids. This

involves designing a user-centric interface that simplifies interaction with complex

NLP models. This democratizes access to advanced language processing tools.

4.2 Blending human input with NLP responses

At each stage of data curation and sentence capture, SENCE allows for human input

into the correctness of its selections. It then stores this feedback and takes it into

11

account the next time a similar choice is to be made by the program. This allows

SENCE to improve its efficiency and accuracy over time. Allowing for human input in

the word and sentence selection processes allows for language expertise to strengthen

the output of SENCE, something that it does not have on its own. This combined

human and NLP system allows for scalable and personalized lesson aids while allowing

for human expertise in the process.

4.3 Assessing how NLP tools can parse different

media formats

This research investigates how efficiently and accurately off-the-shelf NLP tools can

parse different formats of text media. Formats of text media, in this sense, mean text

from textbooks, online articles, transcripts from TV shows, and storybooks. SENCE

seeks to answer the research question: can a data cleaning and curation process that

works for one type of media work as effectively for another without any special tuning?

4.4 Scaffolding complexity to reinforce vocabulary

knowledge

SENCE provides vocabulary knowledge assessments to students with scaffolding in

increased complexity. This way, a student is guided through simpler sentences before

they are asked to correctly identity vocabulary usage in more complex sentences.

Additionally, students are shown sentences from the passage that they have just

encountered, and finally shown the same keywords in sentences that are from passages

unknown to them. This approach tests a student’s capacity to correct use and identify

the meaning of words in familiar and unfamiliar settings. Progress on students’

usage patterns are stored, and shown to instructors at the end of the lesson, so that

12

instructors are aware of each student’s progress in word awareness and know each

student’s areas of weakness and strengths for the words being taught.

13

Chapter 5

Proposed Architecture

The basic premise of SENCE is to be an educational aid for instructors teaching

critical vocabulary to all students, including those with and without developmental

language disorders.. This tool comes into use at the end of a lesson, where it reinforces

students’ vocabulary comprehension of the vocabulary just taught on an individual

basis. In order to accomplish this, SENCE does the following:

5.1 Corpus parsing and storage

For all passages, and before selecting words and sentences for a specific lesson, SENCE

does the following:

• Parse and store passages: SENCE parses a given passage and stores it in its

database for future use. It cleans the text of special characters, extra spaces

and other formatting, storing the passage as plain text.

• Capture keywords from the passage: For a given stored passage, SENCE

identifies all keywords in the text. For example, to teach a student about the

words volcano, or lava, the instructor might choose a passage about mountains

and volcanoes. SENCE will parse through the stored passage in its database

14

and capture and store these keywords. Instructors are given the opportunity to

add additional keywords if necessary for the passage at this stage.

• Capture sentences associated with the keywords being taught: SENCE captures

all the sentences in the lesson associated with the keywords and stores them in

its database. This now serves as an exhaustive corpus for reinforcing students’

correct vocabulary usage.

These three steps as shown in Figure 5.1 are done once for each new passage.

Every time a passage is brought up to be taught, SENCE assesses if these steps have

been performed. If they have, its skips to the next step. There is no user modification

of sentences at this stage because the initial corpus is treated as the source of truth

for the following features of SENCE.

Import lesson

Extract all
keywords

Extract sentences
based on keywords

User input to add
keywords if

needed

Figure 5.1: Data diagram of corpus parsing and storage

5.2 Lesson-specific keyword and sentence selection

and storage

Once a lesson, its keywords, and associated sentences have been stored in its database,

SENCE is now ready to perform lesson-specific tasks. The goal of this section is to

15

pick keywords for a lesson and sentences associated with those keywords. Sentences

are then classified as simple, medium, and complex sentences based on sort conditions.

Currently, SENCE can classify sentences based on i) sentence length, ii) the syntactic

dependency of a keyword relative to the sentence, iii) the number of Tier 2 and Tier 3

words in a sentence, and iv) the number of keywords in a sentence. In speech-language

pathology, vocabulary is often differentiated on the basis of the commonality of usage

of the word. They are, therefore, broken into tiers of usage or tier words. A deeper

discussion of tier words is found in Chapter 6. A data diagram of the steps performed

is shown in Figure 5.2.

SENCE performs the following steps in this phase:

• Obtain lesson keywords and sort type from the instructor: Instructors

are requested to choose a passage from existing passages in SENCE. Once they

choose a passage, they are shown the exhaustive list of keywords for this lesson.

Instructors then pick the four or five words they want to teach in the current

session. They also pick one of the four sort types for sentence classification.

• Check if sentences have already been classified for this sort type:

SENCE next checks if sentences have already been classified for this sort type.

If not, it retrieves all the sentences picked for this lesson from its database,

picks the sentences for this sort type, and classifies and stores them as simple,

medium, and complex sentences. Users can modify the sentences stored at this

stage. For example, if SENCE picks a sentence “It spews lava,” a user can

store a modified version such as “The mountain spews lava” of this sentence.

Instructors can also pick which simple, medium and complex sentences they

want to store for the given sort type and passage. This optional down-select

happens because it is possible that SENCE can generate more than the 4-5

sentences required for each complexity type, and it is left up to the instructor

to select which sentences are the most representative of the words being taught.

16

Obtain	Obtain lesson keywords, and filter type
for the sesion

Retrieve sentences

Project?
Check if sentences have

already been generated for
this lesson and filter type

Get top ’n’ sentences for simple,
medium, complex sentence types

based on sort

Add sentences from other corpora using same
keywords

Sort these sentences into simple, medium
complex, and pick one of each type that is most

representative of the keywords for lesson

Merge both sentence
lists and store/display

Generate
sentences based

on sort and
keywords

Store sentences

 Yes No

User can modify sentences

User picks which simple,
medium, complex

sentences to store for a
passage and keywords

Figure 5.2: Flow of operations for sentence selection with sort applied.

17

• Add sentences from other corpora to the current set of sentences: In

order to assess the student’s range of comprehension of the word, SENCE picks

sentences from other passages in its database that contain one or more of the

words being taught in the lesson. This is then classified into simple, medium,

and complex sentences based on the sort criteria chosen by the instructor.

• Stores sentences for the lesson based on keywords and sort: The final

list of curated sentences from the lesson and from outside of it are stored in

the database for the instructor to use in the current session and for the aid of

future lessons based on same keywords and sort criteria. This way, instructors

can reuse previous iterations of the lesson without having to generate sentences

from scratch for every lesson. Instructors can thereby build on the work of

previous sessions.

5.3 Major Libraries and Software Used

SENCE uses MongoDB [33] as its database of choice. MongoDB is a lightweight

NoSQL distributed database program. Because data doesn’t need to fit within the

confines of a strict relationship, MongoDB can operate as a general data store. This

type of database provides several advantages. The primary benefit of using a NoSQL

system is that it provides developers with the ability to store and access data quickly

and easily without the overhead of a traditional relational database. They do not

follow a rigid database schema thereby making it quicker to add data in a different

form without having to make any additional changes to the database. Additionally,

MongoDB stores records as JSON collections, making it easy to store and retrieve

data from the database in Python.

SENCE uses spaCy [22] predominantly for all of its NLP work. spaCY is used

to parse and clean text. It is used to remove ‘stop words’ when determining critical

words in a passage. Stop words are high frequency words in passages that are often

18

removed before a passage is analyzed that do not confer additional meaning to a text.

In English, examples of stop words include:

• Articles: a, an, the

• Conjunctions: and, but, or

• Prepositions: in, on, at, with

• Pronouns: he, she, it, they

• Common verbs: is, am, are, was, were, be, being, been

SpaCY is also used for chunking text, finding position of words in a sentence,

and sentence editing. Details of how this is done are covered in Section 7.4.3 and

Section 7.5.1 below.

Stanza is used in SENCE primarily to lemmatize text. It performs better than

spaCY for accuracy in lemmatization. The usage of Stanza in SENCE is detailed in

chapter Section 7.3.1.

pyInputPlus is a Python module to provide input() - and raw input() -like

functions with additional validation features. SENCE uses pyInputPlus wherever

user input is required, so that SENCE can perform immediate, initial validation of

user input before it is accepted by the program. pyInputPlus also provides a uniform

interface for command-line interactions with the system. For instance, choices are

presented as a numbered list, where the user only has to enter the choice number of

the option they wish to select. This reduces the number of typos and other kinds of

user-initiated errors. An example of this is shown in Figure 5.3. The user only needs

to type in the number 1-4 instead of the entire choice in words. pyInputPlus also

has in-built validation methods to ensure only a choice of what is present is chosen.

So, if a user enters the number 5 or an alphanumeric input, it will return with an

error message and prompt the user to re-enter their choice.

19

Figure 5.3: Example of pyInputPlus Choice menu

20

Chapter 6

Database Design

This chapter describes the MongoDB collections (synonymous with a SQL table) in

SENCE. The first three collections shown in Figure 6.1 are the passage, keywords and

tier words collections.

The passage collection stores the unedited corpus of text from the lesson. It stores

the title of the lesson, the text, the total number of words in the passage, the total

number of sentences, the average sentence length in the passage, and the length of the

longest sentence in the passage. It also stores the grade level of the lesson if available.

Finally, media in the collection refers to whether the lesson comes from a storybook,

a textbook, or television show.

keywords

inserted_by

passage_num

_id

keyword

PrimaryKey

Unique

modified_sentence

modified_by

sentence_length

modified_sentence

_id PrimaryKey

ForeignKeyorig_sentence_id

tier_words

inserted_by

grade

word

_id

Unique

PrimaryKey

tier

sentences_for_passage

source

sentence_with_spaces

Compound
Unique Keysentence_id

difficulty_level

username

Compound
Unique Key

sort Compound
Unique Key

sentence_type

keywords

PrimaryKey_id

passage_num Compound
Unique Key

sentences

pos_present Array

passage_id

sentence_length

Arraykeyword_sys_ids

sentence Unique

PrimaryKey_id

student_response

Booleancorrect

source

keywords Array

sort_type

passage

sentence_response

sentence_original

time_assessed

student_name

Primary Key_id

passage

grade

max_sentence_length

avg_sentence_length

total_sentences

total_words

media

title

text

PrimaryKey_id

Figure 6.1: Data model diagrams of passage, keywords and tier words collections.

21

The keywords collection is a comprehensive store of all the critical words identified

for a given lesson. It also stores which lesson the keyword is associated with, and if

the keyword was identified by the system, or added later by an instructor.

The tierwords collection is independent of the other two collections. It is a

comprehensive store of tier 2 and tier 3 words. In speech-language pathology,

vocabulary is often differentiated on the basis of the commonality of usage of the

word. They are, therefore, broken into tiers of usage, or tier words. Tier 1 words

are basic words that are commonly used in everyday language. Examples are run,

see, book, and school. Tier 2 words are high-frequency words used by language users

across content areas. Because they are not used in spoken language as frequently,

Tier 2 words can present challenges to some students when they are used in text.

Some examples of tier 2 words are cite, formulate, and evaluate. Tier 3 words are

not used frequently except in specific content areas. These words are necessary for

understanding the content presented in academic areas. Examples are respiration, pi,

amendment, and protagonist. Tier words serve as a useful indicator of the complexity

of the vocabulary being taught in the lesson and, therefore, one of the sort types

used in selecting sentences for vocabulary comprehension assessment in SENCE. In

addition to the 2506 tier 2 and 3 words identified in SENCE (1288 tier 2 and 1218

tier 3 words), instructors can add additional tier words as needed. Tier 2 and 3 words

were collected from [7], [52], [57] and [56].

The next two collections in the SENCE database are the sentences and modi-

fied sentences collections. The data model diagrams for these collections are shown

in Figure 6.2. The sentences collection stores all the sentences that contain keywords

identified for the passage. Aside from the sentence, this collection stores the ids of

keywords, the length of the sentence, the passage id the sentence comes from, and

the parts of speech (pos present) present in the sentence. The pos present field helps

instructors sort sentences based on the parts of speech they would like to concentrate

on for the lesson.

22

keywords

inserted_by

passage_num

_id

keyword

PrimaryKey

Unique

modified_sentence

modified_by

sentence_length

modified_sentence

_id PrimaryKey

ForeignKeyorig_sentence_id

tier_words

inserted_by

grade

word

_id

Unique

PrimaryKey

tier

sentences_for_passage

source

sentence_with_spaces

Compound
Unique Keysentence_id

difficulty_level

username

Compound
Unique Key

sort Compound
Unique Key

sentence_type

keywords

PrimaryKey_id

passage_num Compound
Unique Key

sentences

pos_present Array

passage_id

sentence_length

Arraykeyword_sys_ids

sentence Unique

PrimaryKey_id

student_response

Booleancorrect

source

keywords Array

sort_type

passage

sentence_response

sentence_original

time_assessed

student_name

Primary Key_id

passage

grade

max_sentence_length

avg_sentence_length

total_sentences

total_words

media

title

text

PrimaryKey_id

Figure 6.2: Data model diagrams of sentences and modified sentence collections.

The modified sentence collection stores versions of a sentence from the sentences

collection that the instructor has modified. For example, if a lesson has a sentence,

“They used music and dance in sacred rituals.”, the instructor might want to modify

the sentence to say, “The Cherokee used music and dance in sacred rituals.” for

added context. To maintain the body of truth in the sentences collection, the

modified sentence collection exists to store any modifications instructors might want

for original sentences.

The final set of collections in SENCE is sentences for passage and

student response. The data model diagrams of these collections are shown in

Figure 6.3. The sentences for passage collection stores all the sentences identified

to be used for a lesson, down-selected from the comprehensive list of all sentences

from a passage based on sort type. For example, for a lesson based on teaching the

keywords, ‘lava’, ‘mountain’, and ‘volcano’ there could be 15 sentences with those

keywords in them. Since the instructor may not want to display all 15 sentences to a

student, they ask for sentences sorted based on the length of the sentences and request

only five sentences back. SENCE does the sort and filter and stores the sentences

in the sentences for passage collection. This collection also stores the username of

the instructor performing the keywords and sort criteria filtering for the lesson, the

id of the passage being taught, sort type, sentence id, and difficulty level, i.e., if

the sentence has been classified as a simple, medium, or complex sentence. This

collection also identifies whether this was a system-sorted sentence or a user-added

23

keywords

inserted_by

passage_num

_id

keyword

PrimaryKey

Unique

modified_sentence

modified_by

sentence_length

modified_sentence

_id PrimaryKey

ForeignKeyorig_sentence_id

tier_words

inserted_by

grade

word

_id

Unique

PrimaryKey

tier

sentences_for_passage

source

sentence_with_spaces

Compound
Unique Keysentence_id

difficulty_level

username

Compound
Unique Key

sort Compound
Unique Key

sentence_type

keywords

PrimaryKey_id

passage_num Compound
Unique Key

sentences

pos_present Array

passage_id

sentence_length

Arraykeyword_sys_ids

sentence Unique

PrimaryKey_id

student_response

Booleancorrect

source

keywords Array

sort_type

passage

sentence_response

sentence_original

time_assessed

student_name

Primary Key_id

passage

grade

max_sentence_length

avg_sentence_length

total_sentences

total_words

media

title

text

PrimaryKey_id

Figure 6.3: Data model diagrams of lesson, sentences for passage, and
student response collections.

sentence using the sentence type field. The sentence with spaces field stores a version

of the sentence with a string of dashes substituted for the keywords chosen for the

lesson. This is used in the assessment phase of SENCE.

The final collection in SENCE is the student response collection. This collection

stores results of how a student performed in correctly identifying the usage of a

keyword in a sentence for a given lesson. This collection stores the name of the student

(student name), the name of the passage used for the lesson, the original sentence

used for evaluation, the student’s response, the keywords and sort type used for the

assessment, whether the sentence came from the lesson taught or outside corpora,

and a value of True or False if the student filled in the right or wrong keywords. This

helps instructors evaluate if the student has a set of keywords or a style of sentences

that presents more difficulty than others.

24

Chapter 7

Description of Methodology with

Results

This chapter will describe the methodology used to implement the SENCE and the

results obtained at each step. It will also outline the challenges encountered and

measures taken to circumvent them.

7.1 Corpus parsing and storage

The first step in implementing SENCE was to create a method to extract text, clean

and parse it, and store it with relevant meta information in Mongo DB. For this

section, and the sections in this chapter that follow, the passage shown in Figure 7.1

will serve as the base example.

As one can see, the text is heavily formatted, with differing font sizes, meta

information like chapter number, grade level of reading, source of material, and the

name of the author. The text is also bolded in some areas, and regular in the rest.

Finally, the text also has information such as **Side note fact:” that do not constitute

separate, stand-alone sentences.

25

Erupt!
Joan Marie Galat
National Geographic Kids – Reading Level 3
CHAPTER 1:
OUR FIERY WORLD
Several times an hour, lava shoots out of a volcano in Italy called Stromboli. Stromboli has
been spewing gas and spitting molten rock for more than 2,000 years! It is one of Earth’s
most active volcanoes. Full eruptions can occur from only minutes to hours apart!
Volcanoes begin deep underground. Hot liquid rock pushes upward. It escapes in a powerful
burst. Lava, ash, and steam pour from the mountain. In an instant, the landscape around the
volcano changes.
**Side note fact: A volcano can destroy and entire town. **Side note fact: Besides Stromboli, a
volcano erupts somewhere on Earth every week. Earth’s surface is made of giant slabs of
constantly moving rock. These giant pieces of rock, or tectonic plates, cover the globe. They
form the crust, our planet’s thin outer layer. The crust floats on the mantle – 1,800-mile-thick
layer of hot liquid, or molten, rock called magma. The mantle flows just enough to slowly
move the plates. Gravity causes the heavy plates to sink slowly into the mantle. Inch by inch,
the plates have crept along for hundreds of millions of years.
**Side note fact: The magma that forms most volcanoes comes from just a few miles below
Earth’s surface. **Side note fact: Tectonic plates are hundreds to thousands of miles across
and 10 to 125 miles thick.
BENEATH YOUR FEET Moving tectonic plates can make mountains and volcanos. Tectonic
plates don’t just float along. They bump, pull apart, and slide below one another. Plates
crashing together can buckle and ground to form mountains. A volcano can form when a
tectonic plate is forced downward into the mantle.
First, heat and pressure inside Earth melt part of the plate, forming magma. The new magma
creates pressure. The pressure helps force the magma upward. If a spot in Earth’s crust has a
hole, called a vent, molten rock and ask can
escape. That’s a volcano!
When the rising magma escapes through the top of the volcano’s vent, it gets a new name.
Now it is lava.
**Side note fact: Heat inside Earth can create hot springs and bubbling mud
pools around the volcano.
When hot magma rises through the crust, instead of the edges of tectonic plates, it is called a
hot spot. Volcano mountains can form when heat and pressure, miles below Earth’s crust,
form magma that rises through cracks in the crust. Shallow areas of magma collect beneath
the crust and ooze upward through the cracks.
**Side note fact: A collapsing volcano can form a caldera more than 60 miles wide. If the
magma reaches a vent, a hole that runs from deep underground to Earth’s surface, a volcanic
eruption occurs. Some eruptions make an explosion. Others
cause lava to simply flow out. A violent explosion can cause a volcano to collapse and form a
giant bowl-shaped area called a caldera.
**Side note fact: Lava turns to solid rock as it cools. Each eruption spreads more lava and
makes the mountain grow larger.
CONES AND DOMES
There are four main types of volcanoes. Cinder cone volcanoes form when exploding lava
hardens into glassy rock
fragments. The falling cinders create a steep, cone-shaped hill around the vent.
**Side note fact: Cinders contain gases that look like bubbles frozen in rock. Composite
volcanoes form mountains with separate layers of lava, ash cinders, blocks, and bombs.
Shield volcanoes form when lava flows in all directions. The liquid rock hardens into a large
wide cone instead of a cone with steep sides.
Volcanoes with lava domes form when lava is too thick and sticky to flow very far. Towering
domes may reach more than half a mile high.
**Side note fact: Some lava domes have been growing for 100 years.

Figure 7.1: Text of the Erupt lesson that is used for examples in the rest of this
chapter.

26

In order for SENCE to properly parse sentences and present them to instructors

and students in a way that makes sense, this text needs to be cleaned before it can be

used further. There are two types of text cleaning performed in this work - automated

and manual.

The text was available as a Word document. This was then copied to a plain text

editor to remove all the formatting which results in a form that can be ingested by

SENCE.

7.1.1 SENCE corpus parsing

SENCE corpus parsing is done by the insertLessonsToMongo.py program. When

run, the program checks to make sure the instructor has selected the correct program

to run, then requests the title, grade and the way the instructor would like to upload

the lesson. There are two ways the instructor can upload a lesson. One is by providing

a file path on the system that SENCE is being used, and the second is by directly

pasting the text into the program. In the example as shown in Figure 7.2 below, the

instructor chose to save a passage with the title of “Erupt-chapter 1” for lesson grade

3 and chose to enter the passage contents by providing a file path.

Figure 7.2: Uploading a passage to SENCE

27

7.1.2 SENCE text parsing

Once the passage has been entered by the instructor, SENCE then performs the

following steps to clean, parse and collect meta information about the content before

saving it in the MongoDB collection called passage.

• First, all extra whitespace such as multiple spaces or newline characters are

removed.

• Then, meta-information about the passage is collected. This information

includes word count, sentence count, average sentence length, and the length of

the longest sentence in the passage.

• Finally, the cleaned passage, and meta information is stored in the passage

collection as shown in Figure 7.3.

Figure 7.3: Erupt! Chapter 1 stored in MongoDB Passage collection

28

7.1.3 Error Checking

SENCE uses PyInputPlus for initial error checking of user input. As shown in

Figure 7.4, SENCE ensures only numeric responses for grade level and import options.

SENCE also checks to ensure that the file path option is valid, and prompts the user

to reenter a valid file path if the previous file path entered was inaccurate, i.e. it leads

to FileNotFound errors.

7.1.4 Collection constraints

The passage collection has one constraint - a unique constraint on the id column

as shown in Figure 7.5. This constraint ensures the id is a unique primary key for

the collection, i.e. each row in the collection can be uniquely identified by the id

column alone.

Figure 7.4: Error checking when uploading a passage to SENCE

29

Figure 7.5: Passage collection constraints in MongoDB

7.2 Keyword extraction

The next step in the evolution of SENCE is the extraction of all keywords in the

passage. Keywords for the purposes of SENCE are defined as critical words essential

to the context of the passage. A subset of these keywords are intended to be used as

words to be taught and reinforced to the student as a part of the lesson. For example,

on a passage about volcanoes, keywords could be volcano, lava, mountain, spew and

hot. The objective of this segment of SENCE is to automate the process of extracting

keywords from a lesson, and then involving instructor input into adding additional

keywords if they wish to do so.

SENCE first presents a list of all available passages in the SENCE MongoDB

database. It then requests the instructor to choose a passage to extract keywords for,

as shown in Figure 7.6. It then checks to see if keywords have already been extracted

for the passage. If they have not, SENCE performs the following steps:

• The passage is first converted to lower case. This is to make sure that SENCE

treats words such as “hello”, “Hello”, and “HELLO” the same.

• The passage is then lemmatized. Lemmatization maps a word to its lemma

(dictionary form). It does this with the use of a vocabulary and morphological

analysis of words, normally aiming to remove inflectional endings only and to

return the base or dictionary form of a word, which is known as the lemma

[46]. For instance, the word ‘was’ is mapped to the word ‘be’. The goal of

lemmatizing the passage is to reduce the number of words in the passage to

only be the set of words that are truly unique. For example, the sentence

30

“The mountain erupted today but it did not erupt yesterday.” is lemmatized to

“the mountain erupt today but it do not erupt yesterday.”. Lemmatizing is a

necessary first step in keyword extraction because it prevents different forms of

a word from being counted as different words.

• Stopwords are then removed from the lemmatized passage. Stop words are

commonly used words such as prepositions and articles that add little value in

identifying keywords.

• The text is then parsed to first identify the part of speech tag of each word, and

the words that are identified as adjectives, adverbs, verbs, nouns, and proper

nouns are chosen. Please note that for this version of SENCE, only adjectives,

adverbs, verbs, nouns, and proper nouns are included in keyword selection; this

can be modified to add other parts of speech if necessary.

• This list of words is then ordered by the frequency of appearance of each unique

word in the list. The top ten are chosen and are presented as the keywords for

the passage.

If the passage already has keywords available for it in the database, SENCE

presents that list of keywords along with what other instructors might have added

for the passage. The instructor is then asked if they would like to add additional

keywords to this list. This is shown in Figure 7.7.

The SENCE collection, called keywords is used to store all the keywords for a

passage. An excerpt of stored keywords for the Erupt! passage referenced above is

shown in Figure 7.8. An interesting database design feature of how keywords are

stored in this collection is the approach to reduce the redundancy of words in the

collection.

31

Figure 7.6: The instructor asked to pick a passage for keyword extraction.

32

For example, the word ‘mountain’ could be a keyword for multiple passages.

Instead of storing the keyword as a separate entry for each passage, SENCE stores

each keyword identified in any passage only once in the collection. It uses the set [34]

feature of MongoDB to instead store all the passages (passage ids) where the keyword

has been identified. This reduces duplication of keywords in the collection. SENCE

also stores information in the inserted by field whether the keyword was identified by

the system (SENCE) or by a user.

Figure 7.7: Showing results available and asking if the instructor would like to add
additional keywords.

33

Figure 7.8: MongoDB collection for keywords.

34

7.2.1 Evaluation of different keyword extraction methods

Several off-the-shelf NLP packages were evaluated for keyword extraction correctness

and how closely they resembled what a human would pick. The software packages

evaluated were spaCy, Yake, Rake, Bert, Textacy, SgRank, and TextRank. Table 7.1

shows the underlying methods for key term extraction for each NLP package

evaluated.

Generally, statistical key term approaches such as those used by Yake and

Rake solely rely on the statistical properties of word occurrences to identify key

terms. Statistical properties include term frequency, word position and co-occurrence.

Statistical methods do not take into account semantic information or the relationship

between words when identifying keywords. Graph-based methods build a graph where

nodes represent words or phrases, and edges represent relationships based on co-

occurrence within a window of words. Words that are highly connected are chosen

as key terms. This approach adds limited semantic information while identifying key

terms since it uses word relationships while choosing key terms. The most advanced

of the three types are transformer-based approaches, which use deep learning to

understand the context and semantics of text. Transformers capture the meaning of

words based on their context within sentences, allowing them to understand nuanced

meanings and relationships. This results in highly accurate keywords that reflect the

richer semantic content of the text.

Table 7.1: Underlying algorithms of different NLP packages evaluated.

NLP Package Underlying approach to key term extraction
Bert Transformer
Rake Unsupervised learning focusing on statistical properties
SgRank combines statistical and graph-based methods
Textacy graph-based method
TextRank graph-based method
Yake Unsupervised learning focusing on statistical properties
spaCy uses both statistical models and transformer-based models

35

A subject matter expert in language and speech helped assess the quality of results

and determine which packages most closely matched human choices. The comparisons

were made for ten passages covering different subjects such as science, art (such

as passages on music and dance), and social studies. Of all of these, the method

that most closely resembled human choices was the method mentioned above using

spaCy’s implementation of lemmatization and part of speech identifier. Table 7.2

shows results from the Erupt! passage. The remainder of the results are available

in Appendix B. The next closest were TextRank, followed by BERT, though BERT

seemed to prefer nouns dramatically to other parts of speech when selecting keywords

from a passage. The choice was made to use spaCy instead of TextRank so as to

minimize the number of libraries used in SENCE. spaCy is used extensively for other

NLP tasks in SENCE, and therefore it was practical to utilize it for keyword selection

as well. Additionally, TextRank and SENCE are the only two methods that allow a

user to choose which parts of speech can be allowed in keyword selection. This allows

for specific subsets of words to be considered for selection. For example, if a user

only wanted to consider nouns, adjectives, adverbs, and verbs for keyword selection,

they can do so with SENCE and TextRank. This cannot be accommodated in other

methods. Comparison of results between SENCE, TextRank and BERT across three

passages is shown in Table 7.3. Full text of the passages are available in Appendix C.

36

Table 7.2: Results of keyword extraction with different NLP packages.

NLP Package Keywords extracted
Bert volcano, eruption, volcanic, magma, erupt, stromboli, lava,

molten, explosion, explode
Rake pressure inside earth melt part, hot liquid rock pushes upward,

look like bubbles frozen, ** side note fact, bubbling mud
pools around, towering domes may reach, large wide cone
instead, volcanoes begin deep underground, new magma
creates pressure, cinder cone volcanoes form

SgRank volcano, layer, change, rock, harden, form, cone, collect, plate,
magma

Textacy time, Cinder cone volcano form, lava domes form, hot liquid
rock, active volcano, volcano change, composite volcano, lava
harden, liquid rock harden, molten rock

TextRank volcano, form, plate, lava, rock, magma, Earth, crust, mile,
fact

Yake volcano, Earth, fact, form, note, plate, side, lava, magma,
rock

SENCE volcano, form, lava, plate, rock, magma, earth, note, fact,
crust, mountain

37

Table 7.3: Comparison of keyword extraction from three passages between BERT,
TextRank and SENCE

Passage: Light and Objects
BERT light, skylight, glass, transparent, sunlight, opaque, shadow, happen,

window, sky
Text
Rank

light, object, opaque, transparent, path, glass, skylight, happen, line,
travel

SENCE light, object, transparent, path, pass, opaque, hit, glass, happen,
line

Passage: American Government - James Madison: A Man with a Plan
BERT state, confederation, independence, government, national, nation,

constitution, constitutional, country, law
Text
Rank

state, government, Madison, United, convention, State, national,
leader, agree, set

SENCE state, madison, government, national, virginia, convention, plan,
united, agree, constitution

Passage: Water Takes Three Forms
BERT boil, evaporate, gas, liquid, water
Text
Rank

change, form, freezer, gas, happen, heat, ice, liquid, solid, turn, vapor

SENCE change, form, gas, ice, liquid, shape, solid, turn, vapor, water

Figure 7.9 shows a comparison of the average number of nouns, proper nouns,

verbs, adverbs, and adjectives chosen by each of the keyword algorithms used. This

analysis was performed over 6 different texts - two with Science subject matter, two

with Social Studies subject matter, and two with Arts subject matter.

38

Figure 7.9: Analysis of number of parts of speech per keyword extraction method
across different passages.

39

It can be seen from this table that BERT and SgRank predominantly favor nouns

and adjectives - at the cost of verbs. This could be because BERT is a transformer-

based model that uses contextual information and semantic importance from a

passage to perform text analysis. Nouns and adjectives typically carry significant

semantic weight and contextual relevance in a sentence. Hence, it leads to BERT

happening to choose nouns and adjectives over verbs and adverbs. Yake, TextRank,

and SENCE perform similarly overall, SENCE does better at selecting a variety of

parts of speech as key terms when it comes to non-science topics than Yake and

TextRank. This can be attributed to the fact that Yake and TextRank use statistical

and graph-based methods, respectively, for key term extraction. They, therefore, do

well when keywords are more frequent, such as those in a science lesson. However, non-

science-based passages, such as those describing music or art, have more descriptive

language that requires a deeper understanding of the relationship between words to

retrieve a richer distribution of key terms. Transformer-based approaches such as

BERT and spaCy, which uses a mix of transformers and graph-based approaches,

perform better at this task due to their complex, pre-trained models performing key

term extraction tasks.

Another advantage of SENCE over multi-word phrase generators, like cinder

cone volcanoes form and pressure inside earth melts (see Table 7.2) is that they

introduce more tier 2 and tier 3 words instead of more complex phrases that are more

appropriate to the target audience, i.e., children between grades of 3 to 5 who use

augmentative and alternative communication.

An opportunity for further improvement when retrieving keywords is to group

composite words together instead of highlighting them as separate words. For

example, composite words like ‘tectonic plate’ or ‘milky way’ are currently identified

as two different words by SENCE. It would be helpful to have them identified as a

singular composite word, as that is how they appear in a passage.

40

7.2.2 Error Checking

As shown in Figure 7.10, SENCE ensures that only numeric responses are given for

index number inputs and only a ’yes’ or ’no’ answer is given for the Yes/No question.

7.2.3 Collection Constraints

There are two constraints on this keywords collection as shown in Figure 7.11.

The id and keyword text columns have unique constraints on them. This

constraint on the id column serves as a primary key, and the constraint on the

keyword text column prevents users from adding duplicate values.

Figure 7.10: Error checking when generating keywords for a passage

Figure 7.11: Constraints for ‘keywords’ collection

41

7.3 SENCE Sentence retrieval based on keywords

Once keywords are generated for a passage, the next step is to retrieve all the sentences

in that passage associated with those keywords. Again, care needs to be taken to

identify all forms of a base word in the sentence. For example, if one of the keywords

is ‘erupt’, the sentence, ‘The mountain erupted yesterday.’ should be retrieved. The

module createSystemSentencesforMongo.py retrieves all sentences that have the

identified keywords in them. The module does the following steps:

• Asks the instructor to choose the passage to retrieve sentences.

• Retrieves all the keywords for the passage.

• If no keywords have been generated for the passage, it requests the instructor

to first generate keywords, and then come back to retrieve sentences.

• If keywords are found, SENCE lemmatizes each sentence.

• Each lemmatized sentence is then checked against the list of keywords for the

passage.

• If there are one or more matches to keywords for a sentence, the sentence is

then inspected for different parts of speech contained in the sentence. As future

work, sentence retrieval for student evaluation can happen based on the types

of parts of speech present in a sentence.

• IDs of the matched keywords and passage containing them are retrieved, and

stored in the MongoDB collection sentences. Only ids of the passage and

keywords are stored in this collection since the original passage and keyword

are already available in the passage and keywords collections, respectively. This

way, the amount of storage needed to store these mappings is minimized. An

example of two entries in the sentence collection in MongoDB is shown in

Figure 7.12.

42

Figure 7.12: Example of two entries in the ’sentence’ collection in MongoDB

43

This list of keywords stored in the MongoDB collection sentences serves as the

source of truth for all further sentence retrieval and usage in SENCE. To preserve

provenance, sentences are not modified at this stage for accuracy or better definition.

Modifications of sentences are done at a later stage.

7.3.1 Choice of lemmatizer

While spaCy is used extensively in SENCE, the one area where it has a significant

drawback is with lemmatizing words - specifically with lemmatizing words in capital

letters. Using the sentence ‘I love Dogs and Cats’ as an example, spaCy produces

‘I love Dogs and cat’ as a lemmatized version of the sentence. It does not correctly

lemmatize Dogs to dog. Stanza produces the accurate result ‘I love dog and cat’. This

difference in results can be attributed to the difference in underlying algorithms of

how spaCy and Stanza handle lemmatization. spaCy uses a rule-based approach [48],

while Stanza uses neural network models trained on Universal Dependencies (UD)

treebanks for lemmatization [54].

A rule-based approach to lemmatization first performs a morphological analysis

to identify the root forms of the word and its affixes. It then looks up a lookup

table to find a match for the lemmatized word. If no match is found, it then applies

linguistic rules to transform a given word to its lemmatized form. The advantage of

rule-based methods is that they run faster and are simpler to use than neural network-

based models. The disadvantage is that since they depend on pre-defined rules, rule-

based algorithms may not handle irregular word forms or complex morphological

transformations as accurately as neural network models.

Stanza uses neural network models for lemmatization. The training data is the

Universal Dependencies treebanks [59], which contain sentences annotated with part-

of-speech tags, morphological features, and lemmas. The neural network algorithms

also place greater emphasis on the context of the word in the sentence, which produces

more accurate lemmas. This allows Stanza to perform better than spaCy across a

44

variety of text and text forms and therefore Stanza is used to lemmatize words in

a sentence before keywords are extracted. The lemmatization process ensures that

the keywords collection only has unique words as much as possible, and reduces the

possibility of multiple forms of a word appearing as keywords.

7.3.2 Error checking

As with previous modules, SENCE uses pyInputPlus to ensure that only numeric

values are entered for passage ids, and prompts the instructor to reenter a value if a

non-numeric value is entered.

7.3.3 Collection Constraints

There are three constraints in the sentences collection - a unique constraint on id to

provide a primary key for the collection, a unique constraint on the sentence column

to ensure there is only one copy of a sentence in the collection, and a text index on the

same sentence column to facilitate quicker retrieval of a sentence from the collection

based on a given search criteria. These constraints are shown in Figure 7.13.

7.4 Sort Criteria

The next step for SENCE after keyword and sentence extraction is to identify

sentences best representative of the passage to test the student’s word comprehension

of the keywords in the lesson. At this stage, the instructor is also requested to down-

select the number of keywords to be used for that lesson. Four to five keywords

Figure 7.13: Constraints on the ‘sentences’ collection in MongoDB

45

are typically selected for a session in SENCE. Once keywords being taught in that

session have been identified, there are two steps to creating the list of sentences

that best represent this subset of keywords. The first is to identify a mechanism for

picking sentences from the passage. These approaches are called ‘sorts’ in SENCE.

For SENCE’s current scope, four different sort criteria have been created.

1. Sentence Length: Group a set of sentences consisting of one or more of the

keywords into groups of simple, medium, and complex sentences based on the

length of the sentence.

2. Number of keywords: Group a set of sentences consisting of one or more of the

keywords into groups of simple, medium, and complex sentences based on the

number of keywords in the sentence, i.e., more the number of keywords in the

sentence, the more complex the sentence.

3. Syntactic dependency of keyword relative to the sentence: Group a set of

sentences consisting of one or more of the keywords into groups of simple,

medium, and complex sentences based on the syntactic dependency of the

keyword to the sentence. If the keyword is the subject of a sentence, it is

classified as a simple sentence, if the keyword is the object of a sentence it is

classified as a medium-complexity sentence, all other dependencies are classified

as complex sentences.

4. Number of Tier 2 and 3 words in the sentence: Vocabulary is often differentiated

on the basis of the commonality of usage of the word. They are, therefore,

broken into tiers of usage or tier words. This is described more in detail in 3. In

this sorting type, the objective is to group a set of sentences consisting of one

or more of the keywords into groups of simple, medium, and complex sentences

based on the number of tier 2 and tier 3 words in the sentence.

46

The following four sub-sections describe the implementation of these sorts in detail.

sentenceSorterByFilter.py is the module that implements the sorting and is

available in Appendix D.

7.4.1 Sort type: Sentence length

From all the sentences retrieved, the first step is to find the length of the longest

sentence in the set. This is needed to define the bounds that define what goes in the

simple, medium, and complex sentence buckets. The bounds for the length of simple

and medium sentences are defined below:

simple upperbound = math.ceil(max lengthofsentence/3) + 2

medium upperbound = (simple− 2) ∗ 2

These two formulae were derived after several permutations to define upper and

lower bounds and ensure an adequate representation of sentences in each bucket. For

most other permutations, an overwhelming number of sentences were classified as

medium-length rather than simple or complex. Table 7.4 shows the upper bounds for

simple and medium-length sentences for sentences of various lengths. Sentences are

classified as complex sentences if they are greater than the upper bound for medium

sentences.

Figure 7.14 shows the sentences identified as simple, medium and complex

sentences based on the keywords ‘volcano’, ‘form’, ‘lava’, and ‘mountain’ and using

sentence length as the sort type. Please note that the two underlined sentences in

each bucket are the sentences that SENCE picked as the two most representative of

the keywords among the list of sentences in that bucket.

47

Table 7.4: Upper bounds for sentence lengths of simple and medium sentences for
different length sentences.

Sentence
length

Simple
sentence
upper
bound

Medium
sentence
upper
bound

Sentence
length

Simple
sentence
upper
bound

Medium
sentence
upper
bound

8 5 6 17 8 12
9 5 6 18 8 12
10 6 8 19 9 14
11 6 8 20 9 14
12 6 8 21 9 14
13 7 10 22 10 16
14 7 10 23 10 16
15 7 10 24 10 16
16 8 12 25 11 18

7.4.2 Sort type: Number of keywords

Since the number of keywords in a sentence will be small, the policy to implement

boundaries for identifying simple, medium, and complex sentences based on the

number of keywords present in a sentence is straightforward. Medium sentences are

expected to have at most twice the number of keywords as those in simple sentences,

and sentences having more than the upper bound for medium sentences are classified

as complex sentences.

bucket size = math.floor(num kw/3)

where num kw is the number of key words taught in the session

simple upperbound = bucket size

medium upperbound = simple upperbound+ bucket size+ 1

48

SIMPLE SENTENCES

• Stromboli is one of Earth's most active volcanoes.
• Volcanoes begin deep underground.
• Lava, ash, and steam pour from the mountain.
• In an instant, the landscape around the volcano

changes.
• A volcano can destroy and entire town.
• They form the crust, our planet's thin outer layer.
• That's a volcano!
• Now it is lava.
• Others cause lava to simply flow out.
• Lava turns to solid rock as it cools.
• There are four main types of volcanoes.
• Shield volcanoes form when lava flows in all directions.
• Some lava domes have been growing for 100 years.

MEDIUM SENTENCES

• Several times an hour, lava shoots out of a volcano in Italy called
Stromboli.

• Besides Stromboli, a volcano erupts somewhere on Earth every week.
• Moving tectonic plates can make mountains and volcanos.
• Plates crashing together can buckle and ground to form mountains.
• A volcano can form when a tectonic plate is forced downward into the

mantle.
• First, heat and pressure inside Earth melt part of the plate, forming

magma.
• A collapsing volcano can form a caldera more than 60 miles wide.
• Each eruption spreads more lava and makes the mountain grow larger.
• Cinder cone volcanoes form when exploding lava hardens into glassy

rock fragments.
• Composite volcanoes form mountains with separate layers of lava, ash

cinders, blocks, and bombs.

COMPLEX SENTENCES

• The magma that forms most volcanoes comes from just a few miles below Earth's surface.
• When the rising magma escapes through the top of the volcano's vent, it gets a new name.
• Heat inside Earth can create hot springs and bubbling mud pools around the volcano.
• Volcano mountains can form when heat and pressure, miles below Earth's crust, form magma that rises through cracks in the crust.
• A violent explosion can cause a volcano to collapse and form a giant bowl-shaped area called a caldera.
• Volcanoes with lava domes form when lava is too thick and sticky to flow very far.

Keywords: volcano form lava mountain
Filter Used: Sentence Length

Figure 7.14: Results of sentences generated with the Sentence Length sort type.

49

Figure 7.15 shows the sentences identified as simple, medium, and complex

sentences based on the keywords ‘volcano,’ ‘form,’ ‘lava,’ and ‘mountain’ and using

‘number of keywords’ in the sentence as the sort type. Please note that the two

underlined sentences in each bucket are the sentences that SENCE picked as the two

most representative of the keywords among the list of sentences in that bucket.

7.4.3 Sort type: Syntactic Dependency of Keyword relative

to the Sentence

This sort type looks at where the keyword lies in the structure of a sentence. The

sentence is classified as simple, medium, or complex if the keyword is present in the

subject, object, or other part of the sentence, respectively. The NLP concept of

chunking [13] is used to determine the subject of a sentence. Chunking a sentence

means breaking the sentence down into smaller, more parseable components. The

chunking process also helps identify the chunk’s relationship to the rest of the

sentence. For example, packages such as spaCy not only provide tools to chunk

a sentence, but they also provide information such as if the chunk is the subject,

object, or root of the sentence.

The following steps are performed for each sentence in the passage:

• The sentence is first converted to a spaCy document.

• Each spaCy document is divided into chunks. spaCy provides a method called

‘noun chunks’ [50] for a spaCy tokenized document that provides the noun

chunks in a sentence. Noun chunks are “base noun phrases” – flat phrases that

have a noun as their head. One can think of noun chunks as a noun plus the

words describing the noun. For example, the sentence ”‘The quick brown fox

jumps over the lazy dog’ provides ‘The quick brown fox’ and ‘the lazy dog’ as

noun chunks present in the sentence.

50

MEDIUM SENTENCES

• Several times an hour, lava shoots out of a volcano in Italy
called Stromboli.

• Lava, ash, and steam pour from the mountain.
• Each eruption spreads more lava and makes the mountain

grow larger.
• The magma that forms most volcanoes comes from just a few

miles below Earth's surface.
• A volcano can form when a tectonic plate is forced downward

into the mantle.
• A collapsing volcano can form a caldera more than 60 miles

wide.
• A violent explosion can cause a volcano to collapse and form

a giant bowl-shaped area called a caldera.
• Moving tectonic plates can make mountains and volcanos.
• Plates crashing together can buckle and ground to form

mountains.

SIMPLE SENTENCES

COMPLEX SENTENCES

• Volcano mountains can form when heat and
pressure, miles below Earth's crust, form
magma that rises through cracks in the crust.

• Cinder cone volcanoes form when exploding
lava hardens into glassy rock fragments.

• Shield volcanoes form when lava flows in all
directions.

• Volcanoes with lava domes form when lava is
too thick and sticky to flow very far.

• Composite volcanoes form mountains with
separate layers of lava, ash cinders, blocks, and
bombs.

• There are four main types of volcanoes.
• They form the crust, our planet's thin outer layer.
• First, heat and pressure inside Earth melt part of

the plate, forming magma.
• Now it is lava.
• Others cause lava to simply flow out.
• Lava turns to solid rock as it cools.
• Some lava domes have been growing for 100 years.

• Stromboli is one of Earth's most active volcanoes.
• Volcanoes begin deep underground.
• In an instant, the landscape around the volcano changes.
• A volcano can destroy and entire town.
• Besides Stromboli, a volcano erupts somewhere on Earth

every week.
• That's a volcano!
• When the rising magma escapes through the top of the

volcano's vent, it gets a new name.
• Heat inside Earth can create hot springs and bubbling mud

pools around the volcano.

Keywords: volcano form lava mountain
Filter Used: Number of keywords in sentence

Figure 7.15: Results of sentences generated with the Number of Keywords in
Sentence sort type.

51

• spaCy, however, does not have a method to retrieve verb chunks similarly.

Therefore, the following method was implemented:

def return_verb_chunks(sentence_tokenized):

verb_chunks = []

for token in sentence_tokenized:

if token.pos_ == "VERB" or token.pos_ == "ADV":

span = sentence_tokenized[token.i:token.i + 1]

verb_chunks.append(span)

return verb_chunks

In this code block, the method return verb chunks accepts a tokenized spaCy

sentence. It then checks the part of speech of each token in the sentence. If

the part of speech is a verb or adverb, it retrieves the corresponding span from

the tokenized sentence. It gathers this list of spans and returns all instances of

verbs and adverbs in the sentence.

• The noun and verb chunks together give all the chunks in the sentence.

• SENCE then iterates over each chunk and determines if the lemmatized version

of the chunk has a keyword in it.

• If it does, it then classifies it as a simple, medium, or complex sentence

depending on the following parameters:

Simple sentence: If the keyword is in the subject of the sentence, it is

identified as a simple sentence.

Medium sentence: If the keyword is the object of the sentence, the sentence

is identified as a medium sentence.

Complex sentence: All other sentences are classified as complex sentences.

52

The syntactic dependency or the location of the keyword in the sentence, is

identified using the ‘root.dep ’ attribute of the spaCy chunk. The dependency

list for spaCy is inherited from ClearNLP [1]. The dependency label for the

subject is ‘nsubj’ (nominal subject), and objects are either ‘dobj’ (direct object)

or ‘pobj’ (object of a preposition).

Figure 7.16 shows the sentences identified as simple, medium, and complex

sentences based on the keywords ‘volcano’, ‘form’, ‘lava’, and ‘mountain’ and using

the ‘syntactic dependency of keyword relative to the sentence’ sort type. Please note

that the two underlined sentences in each bucket are the sentences that SENCE picked

as the two most representative of the keywords among the list of sentences in that

bucket.

7.4.4 Sort type: Number of Tier 2 and 3 words in sentence

As described in Chapter 6, vocabulary is often differentiated on the basis of the

commonality of usage of the word. They are, therefore, broken into tiers of usage or

tier words. SENCE, therefore, uses the number of tier 2 and tier 3 words (as described

in Chapter 6) in a sentence as a sort type to classify sentences as simple, medium,

and complex.

SENCE has a pre-built collection of 2,506 tier words - 1288 tier 2 words and 1,218

tier 3 words.

• Sentences with matching keywords are retrieved from the ‘sentences’ collection

in MongoDB.

• Each sentence is then tokenized, i.e., split into each word using spaCy.

• All stop words are removed from this set of words.

• Each token is then lemmatized.

53

SIMPLE SENTENCES

• Several times an hour, lava shoots out of a volcano in Italy called
Stromboli.

• Volcanoes begin deep underground.
• The magma that forms most volcanoes comes from just a few miles

below Earth's surface.
• Lava turns to solid rock as it cools.
• Shield volcanoes form when lava flows in all directions.
• Volcanoes with lava domes form when lava is too thick and sticky to

flow very far.

MEDIUM SENTENCES

• Moving tectonic plates can make
mountains and volcanos.

• Others cause lava to simply flow out.
• There are four main types of volcanoes.

COMPLEX SENTENCES

• They form the crust, our planet's thin outer layer.
• Plates crashing together can buckle and ground to form mountains.
• A volcano can form when a tectonic plate is forced downward into the mantle.
• First, heat and pressure inside Earth melt part of the plate, forming magma.
• Now it is lava.
• Volcano mountains can form when heat and pressure, miles below Earth's crust, form magma that rises through cracks

in the crust.
• A collapsing volcano can form a caldera more than 60 miles wide.
• A violent explosion can cause a volcano to collapse and form a giant bowl-shaped area called a caldera.
• Composite volcanoes form mountains with separate layers of lava, ash cinders, blocks, and bombs.

Keywords: volcano form lava mountain
Filter Used: Syntactic dependency of keyword relative to the sentence

Figure 7.16: Results of sentences generated with the Syntactic dependency of
keyword relative to the sentence sort type.

54

• This lemmatized list of words is then used as a match parameter for the

tier words collection in MongoDB, and all matches are returned.

• The instructor is then shown the list of tier 2 and 3 words and asked if they

would like to add more tier words to the passage.

• If yes, the additional words are added.

• If new tier words were added, sentences are checked again to determine if the

new tier words are present in them.

• SENCE then determines the most number of tier words in a sentence. It then

defines the upper bounds for simple and medium sentences as:

simple upperbound = math.floor(most tier words)/3

medium upperbound = simple upperbound ∗ 2

Complex sentences are sentences that have more tier words than the medium

upper bound.

Figure 7.17 shows the sentences identified as simple, medium and complex

sentences based on the keywords ‘volcano’, ‘form’, ‘lava’, and ‘mountain’ and using

the ‘number of tier 2 and tier 3 words in the sentence’ sort type. Please note that the

two underlined sentences in each bucket are the sentences that SENCE picked as the

two most representative of the keywords among the list of sentences in that bucket.

7.4.5 Comparison of sort types

The four sort types mentioned above, sentence length, number of keywords, syntactic

dependency of keyword relative to the sentence, and number of tier 2 and tier 3 words

in a sentence are four examples of different types of sorts that can be applied to a set

of sentences.

55

SIMPLE SENTENCES

• They form the crust, our planet's thin outer layer.
• That's a volcano!
• Now it is lava.
• A collapsing volcano can form a caldera more than 60 miles wide.
• Lava turns to solid rock as it cools.
• There are four main types of volcanoes.
• Shield volcanoes form when lava flows in all directions.

MEDIUM SENTENCES

• Several times an hour, lava shoots out of a volcano in Italy called Stromboli.
• Volcanoes begin deep underground.
• Lava, ash, and steam pour from the mountain.
• In an instant, the landscape around the volcano changes.
• A volcano can destroy and entire town.
• Moving tectonic plates can make mountains and volcanos.
• Plates crashing together can buckle and ground to form mountains.
• A volcano can form when a tectonic plate is forced downward into the mantle.
• First, heat and pressure inside Earth melt part of the plate, forming magma.
• Others cause lava to simply flow out.
• Cinder cone volcanoes form when exploding lava hardens into glassy rock fragments.
• Volcanoes with lava domes form when lava is too thick and sticky to flow very far.
• Some lava domes have been growing for 100 years.

COMPLEX SENTENCES

• Stromboli is one of Earth's most active volcanoes.
• Besides Stromboli, a volcano erupts somewhere on Earth every week.
• The magma that forms most volcanoes comes from just a few miles below Earth's surface.
• When the rising magma escapes through the top of the volcano's vent, it gets a new name.
• Heat inside Earth can create hot springs and bubbling mud pools around the volcano.
• Volcano mountains can form when heat and pressure, miles below Earth's crust, form magma that rises through cracks

in the crust.
• A violent explosion can cause a volcano to collapse and form a giant bowl-shaped area called a caldera.
• Each eruption spreads more lava and makes the mountain grow larger.
• Composite volcanoes form mountains with separate layers of lava, ash cinders, blocks, and bombs.

Keywords: volcano form lava mountain
Filter Used: Number of tier 2 and tier 3 words in the sentence

Figure 7.17: Results of sentences generated with the number of Tier 2 and Tier 3
words sort type.

56

They are by no means exhaustive, and other sort types can be identified here,

especially as the reading grade of the intended audience increases. Having said that,

the sort-type sentence length will be best for the first introduction of the word to

the student as the sentences do not have complex structures and have fewer new

words in each sentence. Once the students have been introduced to a new word and

can correctly identify the word in sentences based on the sentence length sort, the

number of keywords and the number of tier 2 and tier 3 words sorts can be used.

These sentences, while longer and more complex than sentences from the first type

of sort, still have the keywords appear toward the beginning of the sentence and are,

therefore, easier to guess.

The most complex of the four sorts discussed is the sort based on the syntactic

dependency of keyword relative to the sentence. Sentences identified by this sort tend

to be longer, and the keywords tend to appear in the middle and end of the sentence.

This is best suited for students who have been through exercises featuring the other

sort types, and this evaluates if they can correctly identify keywords irrespective of

whether the keyword is the subject, or object, or has another syntactic dependency

to the rest of the sentence.

Figure 7.18 shows the top two sentences picked by SENCE for each of the four

types of sorts. The color coding shows the same sentences being picked by different

sort types for different complexities. For instance, the sentence ’Lava, ash and steam

pour from the mountain’ with a cell background of light yellow is picked as a Simple

sentence for the Sentence Length sort, medium sentence for number of keywords and

number of tier 2 and tier 3 words sorts. This is noticed for other sentences picked

too. Four sentences appear in at least three of the sorts as either simple, medium, or

complex sentences. This is because the sentence similarity method used to pick the

top two sentences (explained in Section 7.4.6) for each sort and sentence complexity

level (simple, medium, or complex) consistently picks sentences that closely match

the string of keywords chosen by the instructor.

57

Sort criteria Simple sentences Medium sentences Complex Sentences

Sentence
length

Lava, ash, and steam pour from the
mountain

Cinder cone volcanoes form when exploding
lava hardens into glassy
rock fragments

Heat inside Earth can create hot springs and
bubbling mud pools around the volcano.

Shield volcanoes form when lava flows in
all directions

Composite volcanoes form mountains with
separate layers of lava, ash cinders, blocks, and
bombs.

Volcano mountains can form when heat and
pressure, miles below Earth's crust, form
magma that rises through cracks in the crust

Number of
keywords

Besides Stromboli, a volcano erupts
somewhere on Earth every week. Lava, ash, and steam pour from the mountain. Cinder cone volcanoes form when exploding

lava hardens into glassy rock fragments.

Heat inside Earth can create hot springs
and bubbling mud pools around the
volcano

A violent explosion can cause a volcano to
collapse and form a giant bowl-shaped area
called a caldera.

Shield volcanoes form when lava flows in all
directions.

Syntactic
Dependency of

Keyword
relative

to the Sentence

Several times an hour, lava shoots out of
a volcano in Italy called Stromboli Others cause lava to simply flow out.

A violent explosion can cause a volcano to
collapse and form a giant bowl-shaped area
called a caldera.

Shield volcanoes form when lava flows in
all directions. There are four main types of volcanoes

Composite volcanoes form mountains with
separate layers of lava, ash cinders, blocks,
and bombs

Number of tier
2 and 3 words

Now it is lava. Lava, ash, and steam pour from the mountain Heat inside Earth can create hot springs and
bubbling mud pools around the volcano.

Shield volcanoes form when lava flows in
all directions

Cinder cone volcanoes form when exploding
lava hardens into glassy rock fragments.

A violent explosion can cause a volcano to
collapse and form a giant bowl-shaped area
called a caldera

Figure 7.18: Comparison of sentences chosen by SENCE for the four sort types.

58

Since these four sentences have most of the keywords chosen for the sort (volcano,

form, lava, mountain) for which they were generated, they feature repeatedly among

the sort results.

Another result to note is that while the most of the sentences have fully formed

contexts within the sentence itself, and do not necessarily need a preceding sentence

to give it context, the ’syntactic dependency of keyword relative to the sentence’ sort

tends to pick sentences that on their own do not provide context and therefore will be

hard to fill in the missing words. For example, with the sentence ’Others cause lava

to simply flow out’, it is hard for the student to understand what is meant by Others.

This occurrence of picking sentences with missing context can be attributed to the

fact that when SENCE is forced to pick sentences with key words in the object of

the sentence (which is the defining criterion for medium complexity sentences for this

type of sort), there are not many sentences to choose from. This can be addressed by

adding other syntactic dependency criteria to picking medium complexity sentences

for this sort type.

7.4.6 Flow of Operations

Figure 7.19 shows the sequence of operations for selecting sentences based on

the sort criteria chosen. storeSentencesForLessonBySort.py is the Python file

that has the main code for this section. There are two other helper files -

SentenceSorterByFilter.py and PickSentencesOtherPassages.py that are called

from this file.

SENCE picks sentences and classifies them as simple, medium, and complex

sentences in the following sequence of steps:

• The instructor is first asked for the index of the lesson to be taught, sort type,

and keywords taught in the lesson. This is shown in Figure 7.20

59

Obtain Obtain lesson, keywords, and
filter type for the sesion

Get list of all sentences with
the keywords in them with the

requested filter applied

Project?Check if sentences have already
been generated for this lesson

Pick the two most
representative sentences each

for simple, medium and
complex sentences

Project?
Ask instructor if they are happy with

the list or if they want to pick their own
sentences from the list

Save SENCE-picked
sentences to the

database

Allow user to pick their own
simple, medium and complex
sentence, optionally modify
them, and save to database

Retrieve previously picked
sentences for given lesson,

keywords and filter

Allow user to modify
sentences and store modified

sentences in db if any

Pick sentences from other lessons for
the same keyword and filter criteria;

store in database

Yes No

Pick own sentencesUse SENCE generated list

Figure 7.19: Sequence of operations for selecting sentences based on sort criteria.

60

Figure 7.20: Selecting lesson, keywords, and sort type for sentence generation.

61

• SENCE then checks to see if sentences have already been generated for this

lesson based on the keywords and sort type chosen. This is done by:

– Checking the sentences for passage collection if sentences are present for

this criterion of lesson, keywords, and sort type choice.

– If sentences are present, it then goes to the sentences collection to

select the equivalent sentence text since only ids are stored in the

sentences for passage collection.

– SENCE then asks the instructor if they are satisfied with the selected

sentences or if they would like to modify any of the sentences present.

– If the instructor would like to modify sentences, modifications are done as

per the Section 7.4.6 below, and the modified sentences are saved to the

modified sentences collection.

• If sentences have not already been saved for the selected lesson, keywords, and

sort type, SENCE performs the following steps:

– Pick all sentences from the sentences collection that satisfy the lesson,

keywords, and sort criteria.

– Check to see if there are modified versions of any of the picked sentences.

If there are, substitute the original text of the sentence with the modified

text.

– These sentences are then sorted according to the sort type chosen as per

the steps described in Section 7.4.

– The top two sentences that most closely align with the set of chosen

keywords are then chosen each for simple, medium, and complex difficulty

questions. This down-select of the number of sentences is done using

the ‘similarity’ [51] method in spaCy. The list of keywords is converted

to a spaCy tokenized document. Each sentence is also converted into a

62

spaCy tokenized document. SENCE then uses the ‘similarity’ method of

spaCy to find the similarity between the two tokenized documents. First,

the sentence to be compared and the string of keywords are converted

to vectors. These vectors capture the semantic meaning of words based

on their context in large corpora. Words with similar meanings have

vectors that are close to each other in this space. SpaCy provides pre-

trained word vectors for several languages. The vectors are trained on

large datasets and capture semantic relationships between words. spaCy

performs word and sentence vectorization as follows: First, the text is

tokenized into individual words or tokens. Next, each token is mapped

to its corresponding vector from spaCy’s pre-trained vector table. For

phrases, sentences, or documents, the vectors of individual tokens are

averaged to create a single vector representation. Once spaCy has the

vector forms of the keyword string and the sentence to compare, the

similarity between the two is calculated using the cosine similarity of their

vector representations. Cosine similarity measures the cosine of the angle

between two vectors, providing a value between -1 and 1. The higher the

similarity score, the closer the sentence is to the list of keywords chosen.

The sentences with the top two scores are chosen for simple, medium, and

complex difficulty sentences. An example of how spaCy similarity works

is shown below:

compare term = nlp(“lava mountain form flow”)

sentence 1 = nlp(“Lava flows from the mountain.”)

sentence 2 = nlp(“This is a beautiful cat”)

compare term.similarity(sent 1) returns 0.14297191358389474

compare term.similarity(sent 2) returns 0.0713364052717547

63

– The instructor is then shown this list of six sentences (two each for simple,

medium, and complex sentences) and asked if they would like to save these

sentences or modify them. If the instructor chooses the latter, the steps in

Section 7.4.6 are followed.

– Sentences are then saved to the sentences for passage collection.

– Sentences from other lessons based on the keywords and sort choice selected

are picked as described in Section 7.4.6.

Modifying sentences:

The instructor is shown the list of sentences generated and asked if they would like

to modify any of the sentences. If the instructor indicates that they would, they are

asked to supply the sentence ids of the sentences they would like to modify. For each

sentence to be modified, SENCE performs the following steps:

• Check the modified sentences collection to see if the sentence has already been

modified by the current instructor. If it has, verify with the instructor that

they would like to modify it again. If the instructor says yes, SENCE asks for

an alternate sentence version. It then uses the ‘set’ [34] attribute of MongoDB

to ensure that only a single instance of {sentence length, modified sentence,

modified by} is stored in the database at a time.

• If the sentence has not been modified previously, the instructor is asked for

an alternate version of the sentence, and this new sentence is added to the

modified sentences collection.

Picking Sentences from other corpora:

Sentences are picked from other corpora using a method that is very similar to picking

sentences from the lesson described above. SENCE first picks sentences from lessons

that are not the lesson being taught and then sorted into simple, medium, and

64

complex buckets based on the sort criteria chosen. The methodology here is the same

as that described in Section 7.4. Finally, one sentence that is most representative of

the keywords is chosen using spaCy’s similarity measure as described above.

Ensuring there are enough sentences in each bucket

An issue that was encountered on an occasional basis was that there was an uneven

spread of sentences between the simple, medium, and complex sentence buckets. Logic

needed to be added to ensure that the upper bounds for simple and medium sentences

could be adjusted on the fly so that there would be sentences provided for all three

buckets. There was also logic needed to make sure that SENCE was not stuck in an

endless loop when there were simply no sentences present to fulfill the criteria.

7.5 Storing sentences based on search criteria

Once SENCE has presented the final list of sentences, and the instructor accepts the

results, the next step is to store these sentences in MongoDB. These final sentences

from the passage and other corpora are stored in the sentences for passage collection.

The following fields are stored:

• id: A unique value for every entry.

• username : The name of the instructor curating this sentence list.

• passage num : The id of the passage chosen for the lesson and sort type.

• keywords: The keywords used for the passage and sort type.

• sort : The type of sort used.

• sentence type : This has a value of ‘system’ or ‘user’ and indicates if the

sentence is unmodified (system) or modified by any user (user).

65

• sentence id : The id of the sentence as it appears in the ‘sentence’ or

‘modified sentence’ collection depending on the value of ‘sentence type.’

• difficulty level : This is one of three values - simple, medium, or complex

depending on the sort type used for the lesson.

• source: This has one of two values - passage or other. Passage indicates

that the sentence came from the passage being taught; other indicates that the

sentence is from other corpora.

• sentence with spaces : As a preparatory step for the next phase of SENCE,

i.e., assessing the student’s vocabulary comprehension, each sentence identified

for assessment is stored in this collection with dashes replacing the keywords

used in the lesson. For example, for the sentence ‘Cinder cone volcanoes

form when exploding lava hardens into glassy rock fragments.’ the sen-

tence with spaces field would hold ‘Cinder cone ———– form when exploding

———– hardens into glassy rock fragments.’

7.5.1 Identifying and replacing keywords in a sentence with

dashes

To replace keywords with dashes, SENCE first needs to identify where the keywords

are located in the sentence. spaCy’s Matcher [49] is used for this. Matcher matches

sequences of tokens based on pattern rules. Figure 7.21 shows the code in SENCE that

accomplishes this. First, all the lemmatized versions of the keywords are added to a

Matcher instance. Then the matcher method is run on the spaCy tokenized sentence.

If there are any matches present, Matcher provides three attributes for each match

- the id of the match, the token position for the start of the match, and the token

position for the end of the match. For example, passing the kw list argument with a

single entry of ‘volcano’ and the sentence ‘Cinder cone volcanoes form when exploding

lava hardens into glassy rock fragments.’ to the code in Figure 7.21 produces a

66

match_id of 15733814258258881866, start and end indices of 2 and 3,

and the text span ‘volcanoes’.

It must be noted here that Matcher only provides case-sensitive matches, and

therefore, the sentence and keywords must first be converted to the same case before

being used. Once SENCE knows the start and end indices of all the keywords in

the sentence, it replaces tokens in those indices with a dash instead. This is then

converted to a text form from the spaCy tokenized form and stored in the database.

This code is shown in Figure 7.22.

67

Figure 7.21: Identifying keywords in a sentence using spaCy Matcher.

Figure 7.22: Code that replaces tokens with dashes.

68

7.6 Assessing students’ vocabulary comprehension

When the instructor has confirmed that there are keywords, sentences, and a filtered

list of sentences based on the sort of choice generated for the lesson, the instructor is

ready to administer the assessment to the student. The instructor is first presented

with a list of lessons, keywords, and sort types available for assessments. This is

shown in Figure 7.23.

Once the lesson, keywords, and sort type have been picked for the assessment,

the student will execute the next section. The student is presented with a list of

increasingly difficult sentences sorted by the simple, medium, and complex sentences

of the sort type chosen. The student is also shown the list of words (keywords) that

are to be chosen to replace the dashes in the sentence. This is shown in Figure 7.24.

There are checks in place to ensure that the student enters the exact number of

words to replace the dashes - and there are helpful error messages provided to rectify

this. This is done using the inputCustom method of PyInputPlus. This method

accepts a custom validation instead of the default validation it provides, such as

checking if the input is a string, integer, date, or choice in a menu item. Once all

the questions have been answered, SENCE then compares the given input to what is

expected and stores a value of correct or wrong for the response.

Figure 7.23: List of lessons with associated keywords and sorts available for
assessment.

69

Figure 7.24: Student performs the assessment.

Determining correctness of response

SENCE performs the following steps to evaluate if the response is correct or not.

• It first replaces the response vocabulary instead of dashes in the sentence.

• It then checks if the sentence is a match to the original sentence. If it is, it

marks the response as correct.

• If there isn’t a direct match, SENCE then goes through each vocabulary

response and compares it to the original keyword expected. This comparison

is done using NLTK’s edit distance method [2]. The edit distance method

calculates the Levenshtein edit-distance between two strings. The edit distance

is the number of characters that need to be substituted, inserted, or deleted,

to transform string1 into string2. If the edit distance is two or less, the correct

keyword replaces the vocabulary response. This is done to reduce responses

being marked as incorrect due to misspellings. An example of this is shown in

Figure 7.26. The student responds with the word ‘hidrogen’ instead of hydrogen.

SENCE auto corrects the word and evaluates it as a correct response.

• Once the keyword comparison is done, and the vocabulary response is possibly

updated, the sentence is checked again against the original sentence. If the

sentences match, the response is marked as correct. Else the response is marked

as an incorrect response.

70

7.6.1 Displaying results

The final component of SENCE is displaying student responses to the instructor. The

instructor is presented with a list of lessons, keywords, and sort assessments that have

been completed. This is shown in Figure 7.25.

Once the instructor picks the assessment to review, the assessment criteria are

shown followed by the original sentence, student response and SENCE’s evaluation

of if the response was correct or not. This is shown in Figure 7.26.

7.7 Evaluation of keyword and sentence extraction

from different media

One of the research questions this dissertation attempts to answer is whether all types

of media, such as text from textbooks or online lessons, storybooks, and transcripts

from television shows, can be treated the same or do they require different levels

of pre- and text-processing. In this section, results with texts from storybooks and

transcripts from television shows will be discussed.

7.7.1 Results with Storybook texts

Two storybook transcripts were retrieved from Project Gutenberg [40]. Project

Gutenberg is an online library of free eBooks whose mission is to encourage the

creation and distribution of eBooks.

Figure 7.25: Instructor shown available assessments for review.

71

Figure 7.26: Sentence evaluations shown to the instructor.

72

The two texts chosen for analysis with SENCE were The Tales of Peter Rabbit

[42] and Chapter 7 of The Princess and the Goblin [41]. These texts are available in

the public domain in the US.

Pre-processing: The pre-processing for both texts was more complicated than

the texts for texts from textbook lessons and online lessons. For example, since the

Tales of Peter Rabbit is a heavily illustrated book, as most children’s literature is. The

text-only version of the transcript had several mentions of [ILLUSTRATION] to show

where an illustration would be present. In order to ensure that [ILLUSTRATION]

would not be picked up as a keyword by SENCE, instances of this word had to be

removed prior to ingestion by SENCE. Both texts also had multiple instances of

extraneous spaces and newlines, and these had to be cleaned prior to ingestion as

well. Raw text from the Peter Rabbit transcript showing these issues is available

in the Appendix at Appendix A.1. A final observation in the pre-ingestion stage is

that even though only short stories (in the case of Peter Rabbit) and one chapter

(in the case of Princess and the Goblin) were used, the text is much longer in length

compared to a similar grade lesson material.

SENCE generated keywords for Storybooks

Peter Rabbit: peter, mcgregor, Mr, run, little, time, rabbit, garden, gate,

jacket

Princess and the Goblin: night, goblin, work, curdie, father, away, miner,

ore, mountain, great

Keyword generation: The box above shows the top ten keywords generated by

SENCE for these passages. From both passages, we can see the presence of names of

individuals (peter, mcgregor, curdie) present in the top ten keywords selected. This

could indicate that proper nouns should not be included in keyword selection for a

given passage.

73

Retrieving sentences based on sort and keywords: The following are the

top two simple, medium, and complex sentences generated from the Peter Rabbit

text, using the keywords: little, time, rabbit and gate, and using ‘Sentence Length’

as the sort type.

Simple Sentences:

- One table-spoonful to be taken at bed-time.

- Mr. McGregor was after him in no time.

Medium sentences:

- Mr. McGregor hung up the little jacket and the shoes for a scare-crow to frighten

the blackbirds.

- He found a door in a wall; but it was locked, and there was no room for a fat little

rabbit to squeeze underneath.

Complex sentences:

- Now my dears,’ said old Mrs. Rabbit one morning, ’you may go into the fields

or down the lane, but don’t go into Mr. McGregor’s garden: your Father had an

accident there; he was put in a pie by Mrs. McGregor.’

- Flopsy, Mopsy, and Cottontail, who were good little bunnies, went down the lane

to gather blackberries: But Peter, who was very naughty, ran straight away to Mr.

McGregor’s garden, and squeezed under the gate!

As expected for a storybook text, the sentence lengths for medium and complex

sentences are much longer than those of lesson-based texts. Another interesting point

of note is that sentences from storybooks have fewer sentences with multiple keywords

in them, than lesson-based texts. This is seen by using the ‘Number of keywords in

sentence’ sort for the same passage. Using the same set of keywords as above, there

are two sentences generated for simple sentences and none for medium or complex

sentences. Sentences generated for simple sentences using these keywords and sort

type are:

- Mr. McGregor hung up the little jacket and the shoes for a scare-crow to frighten

the blackbirds.

74

- Once upon a time there were four little Rabbits, and their names were– Flopsy,

Mopsy, Cotton-tail, and Peter.

7.7.2 Television shows

Two television show transcripts were retrieved for the purposes of this dissertation

work. They were retrieved from eMediaVA. eMediaVA is Virginia’s premier digital

media content library for educators and students, providing access to thousands of

free, relevant, standards-of-learning-aligned digital learning resources for classrooms

[15]. The two transcripts chosen for analysis with SENCE were an episode of Bill Nye

the Science Guy [14] and an episode of Continue to Know with WHRO [16]. The raw

texts for these transcripts are available at Appendix A.3 and Appendix A.2.

Pre-processing: The pre-processing of text prior to ingestion by SENCE was by

far the most cumbersome of the three media types evaluated. Television shows tend

to be extremely conversational in nature, and therefore, a lot of data cleaning needs

to be done before it can be ingested. The transcripts also contain meta information

such as the name of the speaker before the transcript of what they say, and this type

of information is of little value while teaching children vocabulary. An attempt was

made to ingest a non-lesson based television show - an episode of Daniel Tiger. It

quickly became apparent that it would be difficult to retrieve functional keywords

from its transcript. The raw text for this transcript is available at Appendix A.4.

Therefore, only lesson-based television show transcripts were chosen to test this type

of media.

One of the issues specific to pre-processing transcripts of television shows was the

presence of special notations, such as musical notes. This is seen in the Bill Nye the

Science Guy: Photosynthesis episode Appendix A.3 transcript. It is also necessary

to parse functional text from conversational banter. Finally, even a ten-minute third

or fourth-grade television show transcript has significantly more text than a typical

lesson for the same grade level.

75

SENCE generated keywords for television show transcripts

Bill Nye the Science Guy - Photosynthesis episode: plant, carbon,

dioxide, food, different, sugar, oxygen, chemical, animal, breathe

Continue to Know with WHRO: Rocks! episode: rock, form, solid,

change, igneous, sedimentary, surface, earth, pressure, heat

Keyword generation: As seen in the results in the box above, since the

television shows chosen were lesson-based, there are far more practical words that

can be used for vocabulary comprehension with SENCE than those generated from

storybooks. A direction for future work based on the keywords generated for the Bill

Nye the Science Guy passage is to enhance keyword generation to include multi-word

keywords. For example, carbon and dioxide are identified as two separate keywords

in this passage, when it would be more practical to have them appear as a single

keyterm.

Retrieving sentences based on sort and keywords: The following are the

top two simple, medium, and complex sentences generated from the Bill Nye the

Science Guy: Photosynthesis transcript, using the keywords: plant, sugar, animal,

breathe and using ‘Keyword in structure of sentence’ as the sort type.

Simple Sentences:

- Plants take in carbon dioxide from the air and give off oxygen.

- It’s the same blue indicator liquid, and it stays blue because these plants are

absorbing carbon dioxide and giving off oxygen.

Medium sentences:

- For example, here’s an apple, and apples are sweet, but it’s a different flavor from,

say, sugar from a sugar cane or orange juice from an orange or maple syrup from a

maple tree.

- Different types of plants live all over the world in different places, and plants keep

the whole world alive.

76

Complex sentences:

- Mm, plant’s sugar, it is a good deal.

- When plants make food, they put the oxygen that we breathe into the air.

As with storybook texts, sentences chosen from television transcripts tend to be

longer. They also are more conversational in nature. Since the topic of the transcript

however is lesson-based, there are more sentences available when it comes to more

than one keyword in the sentence. Using the same set of keywords as above, and

the ’‘Number of keywords in sentence’ sort, there are more sentences generated than

with storybook transcripts. However, SENCE could only still retrieve one sentence

of complex complexity for this type of sort. The SENCE retrieved sentences for these

keywords and sort type are below:

Simple Sentences:

- Plants take in carbon dioxide from the air and give off oxygen.

- It’s the same blue indicator liquid, and it stays blue because these plants are

absorbing carbon dioxide and giving off oxygen.

Medium sentences:

- Mm, plant’s sugar, it is a good deal.

- When plants make food, they put the oxygen that we breathe into the air.

Complex sentences:

- Now, plants take in carbon dioxide given off by animals and fungus and some other

plants and make oxygen, which animals like us breathe.

77

Chapter 8

Conclusions and Broader Impacts

The following are the significant takeaways from this research:

Assessment of NLP off-the-shelf tools: The NLP ecosystem is flush with

many NLP libraries for basic and complex NLP tasks. It is tricky to determine which

libraries are best suited for different tasks. Each also incurs its own compute and

storage costs. While many libraries might do the same task, not all produce the same

results. For example, for the sentence ‘Several times an hour, lava shoots out of a

volcano in Italy called Stromboli.’ spaCy identified the word ‘shoots’ as a noun. In

contrast, Stanza correctly identified the part of speech as a verb.

As discussed in Section 7.2.1, different key term extraction algorithms produce

significantly different results. Some allow for fine-tuning and filtering, while others

do not. It is essential to correctly identify which package is a good fit for each NLP

problem on a case-by-case basis.

Another point of note is that comprehensive packages like spaCy and NLTK can

do the vast majority of most basic NLP tasks, such as word and sentence tokenization,

collect basic sentence metrics such as length of sentence, and find parts-of-speech and

lemma versions of words. A researcher does not have to deploy a plethora of tools to

do simple NLP tasks; they will be able to do most of what they need to do with just

one or two.

78

Finally, it was also noticed that sometimes packages treat the same process

differently between multiple methods in the same package. Taking the example of the

word tokenizer and Matcher [49] tools in spaCy, it was found that the spaCy word

tokenizer counted ’Mr.’ as one token. In contrast, spaCy’s Matcher treated it as two.

This can lead to unexpected results if unaccounted for.

Comparing keyword extraction algorithms: While there are several off-the-

shelf keyword / keyterm extraction algorithms available, not all of them work exactly

alike. Before they can be used, they all need pre-processing steps, such as removing

stop words and lemmatizing. Additionally, packages such as Rake and Textacy

generate long phrases as key terms instead of single and composite words. BERT

leans toward selecting more nouns and adjectives at the cost of verbs. spaCy (which

is the underlying keyword extractor in SENCE) and TextRank perform similarly.

However, it was noted that SENCE performed better at identifying different parts

of speech (such as nouns, adjectives, adverbs, and verbs) as compared to TextRank

when it comes non science-based lessons (such as lessons on arts or social studies).

Comparing sentence sort types: There were four different sort types for

sentence sets discussed in this dissertation: sentence length, number of keywords,

syntactic dependency of keyword relative to the sentence, and the number of tier 2

and tier 3 words in a sentence. They are by no means exhaustive, and other sort

types can be identified here, especially as the reading grade of the intended audience

increases.The simplest sort type that can be introduced just after a new vocabulary

word is introduced to a student is the sort type based on sentence length. This is

because the keywords tend to appear at the beginning of the sentence, and there are

few new words in each sentence compared to the other sort types. The intermediate

level sort types are sorts based on the number of keywords, and the number of tier 2

and tier 3 words in a sentence. Sentences here tend to be longer but keywords still

appear to the beginning of the sentence and are therefore easier for students to get

right. The most complex type of sort is the sort based on the syntactic dependency of

79

keyword relative to the sentence. This is because the keywords tend to have different

and more complex syntactic dependencies to the rest of the sentence.

NoSQL databases are a different approach to data storage than

traditional relational databases: NoSQL databases such as MongoDB have a

different approach to data storage than traditional SQL databases such as PostgreSQL

or MySQL. The traditional approaches of foreign keys and joins do not have 1-1

equivalents in MongoDB. NoSQL databases are primarily used for text storage and

are a convenient way to store information in a format similar to JSON files. It is

cumbersome to implement relational database structures in a noSQL database. Since

NoSQL databases are primarily used for text storage, they also do not lend well to

heavy in-database analysis. Data is expected to first be retrieved and then analyzed

within the confines of software code. Using an example of counting the number of

sentences in the sentences collection grouped by passage, the SQL code of

select count(1) from sentences group by passage_id

order by passage_id ASC;

translates to

db.sentences.aggregate(

{$group : { _id : "$passage_id", count : {$sum : 1}}}

).sort({"_id":1})

in MongoDB.

Volume of text needed for reasonable sentence retrieval: Through

multiple iterations of running Sentence Retrieval based on sort types in SENCE, it

was evident that there needs to be a base minimum of keywords specified to retrieve

enough sentences to fill the simple, medium and complex sentence buckets adequately.

For example, if there were only two keywords specified, SENCE would not find many

sentences from the lesson being taught since there might not be many sentences in the

passages that feature only one of two keywords. This reduces the quality of sentences

80

that are finally chosen for student assessment. In the same light, there also needs to

be a maximum number of keywords per sort type chosen. Otherwise, the risk is that

there are too many blanks in the sentence, making it unintelligible for the student to

get right.

Storybooks are not ideal candidates for retrieving sentences based on

keywords: It was interesting to note that while storybooks have much longer text

lengths (number of sentences) than the average lesson-based text, the number of

sentences retrieved for the top ten keywords were still relatively small. This is

probably due to the fact that there are fewer highly repeated words in conversational

language, such as available in storybooks and television shows, than there are in

lesson-based texts.

8.1 Broader Impacts

There are three significant, broader impacts contributions to this work. They are

discussed below.

Provides a straightforward, user-friendly interface to an NLP applica-

tion: This tool is primarily designed for instructors without a background in natural

language processing or experience in using NLP libraries. It provides automation

powered by NLP to everyday classroom tasks through an easily understood and

navigable interface. SENCE uses human language prompts to guide instructors

through the process of keyword generation and sentence extraction. Similarly, it uses

friendly and easy-to-understand language to help students complete the assessments.

Versatility of usage: Unlike many artificial intelligence solutions that require

stable and often high-speed internet connections, SENCE can operate without either.

Since the models and libraries used in SENCE are pre-downloaded, SENCE can

operate in areas with unreliable or no internet. This has broad applications for

vocabulary training in rural and remote areas.

81

Open to community contributions: Since SENCE is entirely built using

open-source software, it is freely available for the education and NLP community to

improve. Improvements for advancing SENCE are discussed in the following chapter.

82

Chapter 9

Future Work

This chapter discusses directions for future work in SENCE. This is discussed from

two perspectives - technology and user experience.

Large Language Models: Since the target student population for this research

were children between the 3rd and 5th grade, the usage of large language models

(LLMs) [3] in SENCE was deemed to be out-of-scope. However, for later grades and

advanced reading levels, LLMs can prove to be a critical improvement. While SENCE

currently only has access to sentences from passages directly supplied to it, LLMs can

provide richer corpora for sentence retrieval. This is because LLMs come pre-trained

on large amounts of data, such as books, articles, and websites.

Additionally, Retrieval-Augemented-Generation (RAG) [4] would be a valuable

addition to SENCE. RAGs can be used for testing students’ vocabulary compre-

hension based on synonyms, and associated vocabulary usage. For instance, in a

lesson based on weather, for keywords rain, clouds, and thunder, a RAG can also

present vocabulary such as humidity, forecast, and tornado, irrespective of whether

they appear in the lesson being taught.

Scaling SENCE: The current purpose of SENCE is to serve as a proof-of-

concept for educators and NLP practitioners on what is possible with off-the-shelf

open-source and lightweight AI tools. It is not currently implemented for large-scale

83

deployment. Web development work, such as creating a more engaging graphical

user interface, developing web session hooks for retrieving user information (such

as username, timestamps, etc), and scaling for multiple instructor-student-lesson

sessions, is in the scope of future work.

Multi-word key terms: SENCE currently only identifies single words as

keywords for a passage. The next iteration of SENCE should include multi-word

key terms as well. For example, the word carbon dioxide would be frequently used

in a passage about gases. SENCE currently will identify carbon and dioxide as two

different key words. In a future iteration, it will be effective to identify carbon dioxide

as a single keyterm.

Survey comparing human and SENCE choices for keyword generation

and sentence retrieval: A survey to compare human and SENCE choices

for keyword generation and sentence retrieval is currently waiting for IRB review.

The survey is in collaboration with Dr. McCarthy and the UT Augmentative

and Alternative Communication, Language, and Literacy (UT-AACL) laboratory.

This survey will examine how practicing teachers, general education and special

education, practicing school-based Speech-Langauge Pathologists (SLPs), pre-service

teachers, and pre-service SLPs select vocabulary they might work on with students.

It also compares how they might classify sentences as simple, medium, and complex

based on the four sort types of SENCE and compare that with the results that

SENCE produces. The survey is ready to be distributed and has been set up using

Qualtrics. Keyword generation will compare human choices with results from SENCE,

YAKE, Rake, Bert, Textacy, SgRank, and TextRank. Results from this survey will

be published at both Education and NLP-centric conferences, such as The 2025

Conference on Empirical Methods in Natural Language Processing [17] or the 20th

Workshop on Innovative Use of NLP for Building Educational Applications [47].

84

Bibliography

[1] Center for Language and Information Research (2024). ClearNLP Guidelines.

Accessed: 2025-01-15. 53

[2] 2024, NLTK Project. (2024). nltk.metrics.distance module. Accessed: 2025-01-15.

70

[3] Amazon Web Services, Inc (2024a). What is LLM (Large Language Model)?

Accessed: 2025-01-15. 83

[4] Amazon Web Services, Inc (2024b). What is RAG (Retrieval-Augmented

Generation)? Accessed: 2025-01-15. 83

[5] Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python:

analyzing text with the natural language toolkit. ” O’Reilly Media, Inc.”. 2, 4, 7

[6] Bishop, D. V. (2006). What causes specific language impairment in children?

Current directions in psychological science, 15(5):217–221. 5

[7] Burnaby School District Blogs (2024). Grades K-12 Tier 2 vocabulary list.

Accessed: 2025-01-15. 22

[8] Butcher, P. G. and Jordan, S. E. (2010). A comparison of human and computer

marking of short free-text student responses. Computers & Education, 55(2):489–

499. 7

85

[9] Campos, R., Mangaravite, V., Pasquali, A., Jorge, A., Nunes, C., and Jatowt,

A. (2020). Yake! keyword extraction from single documents using multiple local

features. Information Sciences, 509:257–289. 4

[10] Danesh, S., Sumner, T., and Martin, J. H. (2015). Sgrank: Combining

statistical and graphical methods to improve the state of the art in unsupervised

keyphrase extraction. In Proceedings of the fourth joint conference on lexical and

computational semantics, pages 117–126. 8

[11] Department of Audiology and Speech Pathology, University of Tennessee Health

Science Center (2025). Jillian H. McCarthy Faculty page. Accessed: 2025-01-15. 3

[12] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training

of deep bidirectional transformers for language understanding. 4, 8

[13] Dudhabaware, R. S. and Madankar, M. S. (2014). Review on natural language

processing tasks for text documents. In 2014 IEEE International Conference on

Computational Intelligence and Computing Research, pages 1–5. 50

[14] eMediaVA (2020). Transcript of bill nye the science guy - photosynthesis episode.

75

[15] eMediaVA.org (2025a). emediava. 75

[16] eMediaVA.org (2025b). ”rocks! (5th grade). 75

[17] emnlp (2024). The 2025 Conference on Empirical Methods in Natural Language

Processing . Accessed: 2025-01-15. 84

[18] Gertner, B. L., Rice, M. L., and Hadley, P. A. (1994). Influence of communicative

competence on peer preferences in a preschool classroom. Journal of Speech,

Language, and Hearing Research, 37(4):913–923. 6

[19] Gray, S. (2005). Word learning by preschoolers with specific language

impairment. 6

86

[20] Hall, N. E. (1997). Developmental language disorders. In Seminars in Pediatric

Neurology, volume 4, pages 77–85. WB SAUNDERS COMPANY. 1

[21] Hecker, O., McCarthy Maeder, J., Berry, M., and Schwarz, I. (2018).

Effectiveness of a speech-to-text vocabulary application for children who are hearing

impaired. In American Speech Language Hearing Association Annual Convention.

American Speech Language Hearing Association. 2

[22] Honnibal, M. and Montani, I. (2017). spacy 2: Natural language understanding

with bloom embeddings, convolutional neural networks and incremental parsing.

To appear, 7(1):411–420. 2, 4, 18

[23] Horev, R. (2018). Bert explained: State of the art language model for nlp.

Towards Data Science, 10. 8

[24] Intelligent Assessment Technologies Limited (2024). Intelligent Assessment

Technologies. Accessed: 2025-01-15. 7

[25] Jawahar, G., Sagot, B., and Seddah, D. (2019). What does bert learn about the

structure of language? In ACL 2019-57th Annual Meeting of the Association for

Computational Linguistics. 8

[26] Jordan, S. and Mitchell, T. (2009). e-assessment for learning? the potential

of short-answer free-text questions with tailored feedback. British journal of

educational technology, 40(2):371–385. 7

[27] Klein, D. and Manning, C. D. (2002). Fast exact inference with a factored model

for natural language parsing. Advances in neural information processing systems,

15. 2, 4

[28] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S., and

McClosky, D. (2014). The stanford corenlp natural language processing toolkit. In

Proceedings of 52nd annual meeting of the association for computational linguistics:

system demonstrations, pages 55–60. 9

87

[29] McCarthy, D. (2009). Word sense disambiguation: An overview. Language and

Linguistics compass, 3(2):537–558. 7

[30] Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing order into text. In

Proceedings of the 2004 conference on empirical methods in natural language

processing, pages 404–411. 4

[31] Miller, G. A. (1995). Wordnet: a lexical database for english. Communications

of the ACM, 38(11):39–41. 7

[32] Min H. Kao Department of Electrical Engineering and Computer Science,

University of Tennessee Knoxville (2025). Michael Berry Faculty page. Accessed:

2025-01-15. 3

[33] MongoDB, Inc. (2024a). MongoDB. Accessed: 2025-01-15. 18

[34] MongoDB, Inc. (2024b). MongoDB $set. Accessed: 2025-01-15. 33, 64

[35] Morgan, P. L., Farkas, G., and Wu, Q. (2011). Kindergarten children’s growth

trajectories in reading and mathematics: Who falls increasingly behind? Journal

of learning disabilities, 44(5):472–488. 6

[36] Murray, J. and Goldbart, J. (2009a). Augmentative and alternative

communication: a review of current issues. Paediatrics and child health, 19(10):464–

468. 3

[37] Murray, J. and Goldbart, J. (2009b). Augmentative and alternative

communication: a review of current issues. Paediatrics and Child Health,

19(10):464–468. 3

[38] Ouellette, G. P. (2006). What’s meaning got to do with it: The role of vocabulary

in word reading and reading comprehension. Journal of educational psychology,

98(3):554. 6

88

[39] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation

ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab.

Previous number = SIDL-WP-1999-0120. 9

[40] Project Gutenberg (2025a). Project Gutenberg. Accessed: 2025-01-15. 71

[41] Project Gutenberg (2025b). The Princess and the Goblin by George MacDonald.

Accessed: 2025-01-15. 73

[42] Project Gutenberg (2025c). The Tale of Peter Rabbit by Beatrix Potter.

Accessed: 2025-01-15. 73

[43] Qi, P., Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D. (2020). Stanza:

A Python natural language processing toolkit for many human languages. In

Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics: System Demonstrations. 4

[44] Rahman, N. and Borah, B. (2022). An unsupervised method for word sense

disambiguation. Journal of King Saud University-Computer and Information

Sciences, 34(9):6643–6651. 7

[45] Rose, S., Engel, D., Cramer, N., and Cowley, W. (2010). Automatic keyword

extraction from individual documents. Text mining: applications and theory, pages

1–20. 4

[46] Schütze, H., Manning, C. D., and Raghavan, P. (2008). Introduction to

information retrieval, volume 39. Cambridge University Press Cambridge. 30

[47] SIGEDU (2024). 20th Workshop on Innovative Use of NLP for Building

Educational Applications . Accessed: 2025-01-15. 84

[48] spaCy (2024a). Linguistic Features - Lemmatization . Accessed: 2025-01-15. 44

[49] spaCy (2024b). Matcher. Accessed: 2025-01-15. 66, 79

89

[50] spaCy (2024c). spaCy - Linguistic Features: Noun Chunks. Accessed: 2025-01-

15. 50

[51] spaCy (2024d). spaCy - Word vectors and semantic similarity. Accessed: 2025-

01-15. 62

[52] Speech Therapy Store (2024). 2,000+ Core Tier 2 Vocabulary Words. Accessed:

2025-01-15. 22

[53] Srivastava, R., Singh, P., Rana, K., and Kumar, V. (2022). A topic

modeled unsupervised approach to single document extractive text summarization.

Knowledge-Based Systems, 246:108636. 9

[54] Stanford NLP Group. (2024). Neural Pipeline - Lemmatization . Accessed:

2025-01-15. 44

[55] Storkel, H. L., Komesidou, R., Fleming, K. K., and Romine, R. S. (2017).

Interactive book reading to accelerate word learning by kindergarten children with

specific language impairment: Identifying adequate progress and successful learning

patterns. Language, speech, and hearing services in schools, 48(2):108–124. 6

[56] Susan E Wagner High School (2024). TIER 2 and TIER 3 VOCABULARY

TERMS – COMMON CORE STATE STANDARDS. Accessed: 2025-01-15. 22

[57] Teachers pay teachers (2024). Tier 3 Vocabulary Words. Accessed: 2025-01-15.

22

[58] The University of Tennessee Health Science Center (2022). Augmentative-

Alternative Communication, Language & Literacy Lab (UT-AACL). Accessed:

2025-01-15. 3

[59] Universal Dependencies (2024). Universal Dependencies. Accessed: 2025-01-15.

44

90

[60] U.S. Department of Health and Human Services - National Institutes of Health

(2019). NIDCD Fact Sheet — Voice, Speech, and Language Specific Language

Impairment . [Accessed 01-02-2025]. 5

[61] Vasiliev, Y. (2020). Natural language processing with Python and spaCy: A

practical introduction. No Starch Press. 10

91

Appendix

92

Appendix A

Raw Text from story books and

television show transcripts

A.1 Raw Text from Project Gutenberg’s The Tale

of Peter Rabbit transcript

Once upon a time there were four little Rabbits, and their names were–

Flopsy, Mopsy, Cotton-tail, and Peter.

They lived with their Mother in a sand-bank, underneath the root of a very big

fir-tree.

’Now my dears,’ said old Mrs. Rabbit one morning, ’you may go into the fields

or down the lane, but don’t go into Mr. McGregor’s garden: your Father had an

accident there; he was put in a pie by Mrs. McGregor.’

[Illustration]

[Illustration]

’Now run along, and don’t get into mischief. I am going out.’

Then old Mrs. Rabbit took a basket and her umbrella, and went through the

wood to the baker’s. She bought a loaf of brown bread and five currant buns.

[Illustration]

93

[Illustration]

Flopsy, Mopsy, and Cottontail, who were good little bunnies, went down the lane

to gather blackberries:

But Peter, who was very naughty, ran straight away to Mr. McGregor’s garden,

and squeezed under the gate!

[Illustration]

[Illustration]

First he ate some lettuces and some French beans; and then he ate some radishes;

And then, feeling rather sick, he went to look for some parsley.

[Illustration]

[Illustration]

But round the end of a cucumber frame, whom should he meet but Mr. McGregor!

Mr. McGregor was on his hands and knees planting out young cabbages, but he

jumped up and ran after Peter, waving a rake and calling out, ’Stop thief!’

[Illustration]

[Illustration]

Peter was most dreadfully frightened; he rushed all over the garden, for he had

forgotten the way back to the gate.

He lost one of his shoes among the cabbages, and the other shoe amongst the

potatoes.

After losing them, he ran on four legs and went faster, so that I think he might

have got away altogether if he had not unfortunately run into a gooseberry net, and

got caught by the large buttons on his jacket. It was a blue jacket with brass buttons,

quite new.

[Illustration]

[Illustration]

Peter gave himself up for lost, and shed big tears; but his sobs were overheard by

some friendly sparrows, who flew to him in great excitement, and implored him to

exert himself.

94

Mr. McGregor came up with a sieve, which he intended to pop upon the top of

Peter; but Peter wriggled out just in time, leaving his jacket behind him.

[Illustration]

[Illustration]

And rushed into the tool-shed, and jumped into a can. It would have been a

beautiful thing to hide in, if it had not had so much water in it.

Mr. McGregor was quite sure that Peter was somewhere in the tool-shed, perhaps

hidden underneath a flower-pot. He began to turn them over carefully, looking under

each.

Presently Peter sneezed–’Kertyschoo!’ Mr. McGregor was after him in no time.

[Illustration]

[Illustration]

And tried to put his foot upon Peter, who jumped out of a window, upsetting

three plants. The window was too small for Mr. McGregor, and he was tired of

running after Peter. He went back to his work.

Peter sat down to rest; he was out of breath and trembling with fright, and he

had not the least idea which way to go. Also he was very damp with sitting in that

can.

After a time he began to wander about, going lippity–lippity–not very fast, and

looking all round.

[Illustration]

[Illustration]

He found a door in a wall; but it was locked, and there was no room for a fat little

rabbit to squeeze underneath.

An old mouse was running in and out over the stone doorstep, carrying peas and

beans to her family in the wood. Peter asked her the way to the gate, but she had

such a large pea in her mouth that she could not answer. She only shook her head

at him. Peter began to cry.

95

Then he tried to find his way straight across the garden, but he became more and

more puzzled. Presently, he came to a pond where Mr. McGregor filled his water-

cans. A white cat was staring at some gold-fish, she sat very, very still, but now and

then the tip of her tail twitched as if it were alive. Peter thought it best to go away

without speaking to her; he had heard about cats from his cousin, little Benjamin

Bunny.

[Illustration]

[Illustration]

He went back towards the tool-shed, but suddenly, quite close to him, he heard

the noise of a hoe–scr-r-ritch, scratch, scratch, scritch. Peter scuttered underneath

the bushes. But presently, as nothing happened, he came out, and climbed upon

a wheelbarrow and peeped over. The first thing he saw was Mr. McGregor hoeing

onions. His back was turned towards Peter, and beyond him was the gate!

Peter got down very quietly off the wheelbarrow; and started running as fast as

he could go, along a straight walk behind some black-currant bushes.

Mr. McGregor caught sight of him at the corner, but Peter did not care. He

slipped underneath the gate, and was safe at last in the wood outside the garden.

[Illustration]

[Illustration]

Mr. McGregor hung up the little jacket and the shoes for a scare-crow to frighten

the blackbirds.

Peter never stopped running or looked behind him till he got home to the big

fir-tree.

He was so tired that he flopped down upon the nice soft sand on the floor of the

rabbit-hole and shut his eyes. His mother was busy cooking; she wondered what he

had done with his clothes. It was the second little jacket and pair of shoes that Peter

had lost in a fortnight!

[Illustration]

I am sorry to say that Peter was not very well during the evening.

96

His mother put him to bed, and made some camomile tea; and she gave a dose of

it to Peter!

’One table-spoonful to be taken at bed-time.’

[Illustration]

[Illustration]

But Flopsy, Mopsy, and Cotton-tail had bread and milk and blackberries for

supper.

THE END

A.2 Raw Text from Continue to Know withWHRO

- Rocks! transcript

Hello, everyone. I am so glad you came to join me today. My name is Mrs. Willis and

today during our Science time, we are going to talk about rocks, the basics of rocks.

We are going to talk about the different types of rocks and how rocks are created

through the rock cycle. So let’s get started.

Okay, so let’s get started with the types of rocks. But first, what is a rock? A

rock is made from one or more minerals. And when these minerals are put together it

creates rocks. Rocks are broken down into three different categories or three different

groups. The first one is igneous rock. Igneous rocks are formed from melted and

cooled, magma or lava. So underneath the Earth’s surface, we have magma. And

when that hot magma melt and cools, it turns into an igneous rock, like basalt. But

when magma comes through the Earth’s surface it becomes lava. When that lava

becomes cool, it turns into a type of rock like obsidian or the mahogany rock. So

igneous rocks are created from melted and cooled, magma or lava. The next type

of rock we have is sedimentary rocks. Sedimentary rocks are layers of sediment,

cemented together with a lot of pressure. Sediments are broken down pieces of rocks.

Broken through weathering and or erosion. Different types of rocks would include

97

shale or limestone. We also find fossils in sedimentary rocks. The third type of rock

is metamorphic rock. Metamorphic rocks are existing rocks that are created by heat

and pressure. The base word for metamorphic is morph-, and that means to change.

So that helps us remember that metamorphic rock changes, like gneiss, is one type of

metamorphic rock.

So now that we have the three different types of rocks, let’s see how they get

created through the rock cycle. So here I have the rock cycle, which is a cycle of

how rocks get formed or get created. So if we were to look at igneous rocks, and

as they breakdown in the sediments, through weathering and erosion they become

sedimentary rocks. If the rocks go through an amount, an extensive amount of

heat and pressure, they become metamorphic rocks. And as metamorphic rocks

can become melted and cooled, it turn back into igneous rocks. But it’s not an ever

growing cycle. It can go other directions. So as in if the igneous rocks undergo a lot

of heat and pressure, they turn into metamorphic rocks. And then as metamorphic

rocks breakdown through weathering and erosion, they can become sedimentary rocks.

And as sedimentary rocks also become melted and cooled, they can turn into igneous

rocks. Wow, I know that that just seemed very confusing.

So let’s make this a little bit simpler. You can also do this if you have some

modeling clay, or Play-Doh around your house. So I’m first going to take some Play-

Doh and I created a volcano. Okay. So as the magma comes through the Earth’s

surface and becomes lava, that lava becomes melted and cooled. And what happens

is it becomes igneous rock. So right now I am creating an igneous rock. Igneous rocks

are created from melted and cooled magma or lava. So let’s say that going through

weathering and erosion. This rock is going to be broken into smaller pieces called

sediments. Sediments are smaller pieces of rock broken down from weathering. So I

have some sediments here and these sediments are going to get pressed together or

cemented together to create a sedimentary rock. Sedimentary rocks are created from

segmented sediments pressed together. So now over time, this rock is going to undergo

a lot of heat and pressure, over time, and then as it changes or morphs together, it

98

starts to become a metamorphic rock. Metamorphic rocks are existing rocks that get

changed through an intense amount of heat and pressure over time. So again, we this

rock can also be broken down into sediments and turn into a sedimentary rock. Or

as it goes through a process of intense heat and gets melted and cooled, it can turn

into an igneous rock. So with your modeling clay or Play-Doh, you can also create

different types of rocks or put your rocks through the rock cycle. So now what we

are going to do, is we are going to watch a video from eMediaVa.org, reviewing the

three different types of rocks in the rock cycle. As you are watching this video, I want

you to pay attention to how rocks are created, and different types of rocks. They will

show different examples of these types of rocks as well. So, make sure you are staying

tuned.

Video Start:

Idaho’s beautiful mountains may look really solid, but like all rocks, they are

constantly changing. That has to do with the rock cycle. There are three major

types of rocks, Igneous, sedimentary, and metamorphic. Igneous rocks are formed

when magma cools and become solid. This can happen below the surface of the

Earth’s crust, or closer to the surface like in the pits of volcanoes. Most of the Earth

is made up of igneous rock. Now, sedimentary rocks are formed when stuff like sand

and dirt are put down in layers, then squeezed by a large amount of pressure until the

layers become solid. Over 75% of the Earth’s land surface, is covered by sedimentary

rock. Metamorphic rocks are rocks that already existed but were transformed by

heat or pressure. Now as soon as rocks are formed, they begin to change. Rocks

breakdown into smaller pieces through weathering. Heat, wind, water freezing and

thawing, can all wear away and crack apart rocks. Plants and animals break up rocks

too. The particles of the original rocks are removed by erosion, or swept away or

blown away to a new location. When the deposits are buried, heat and pressure make

them into new rocks, and the rock cycle begins all over again. How rocks are formed

is one way to classify or identify rocks. Another way is to figure out what it’s made

of. A rock is made up of one or more minerals. Minerals are made up of one or

99

more of 92 different natural elements that combine together in different ways. Some

rocks like gold and diamonds are very valuable, and others are well useful for a good

skipping stones. Rocks take a long time to form and they are always changing. We

live on them, build our homes out of them, and even wear them. Rocks and minerals

are essential to our lives.

Video End:

Now, hope you enjoyed that video from eMediaVa.org. So let’s do some review.

Let’s start with do you remember how rocks are made? Or what is a rock? Did

you say made from one or more minerals? Then, you are correct. Rocks are created

from one or more minerals together. There are three types of rocks; igneous rocks,

sedimentary rocks, and metamorphic rocks. We talked about igneous rocks were

created from melted magma or lava. You remember where magma is located? You say

underneath the Earth’s surface? Good job. So when magma underneath the surface is

cooled, it also becomes igneous rocks. This as well as once magma comes through the

Earth’s surface and becomes lava, that lava is cooled and become igneous rocks, like

our example. So, as rocks breakdown through weathering and erosion. They become

sediments. You remember what sediments are? Did you say small pieces of rock?

Good. So once these small pieces of rocks or small pieces of sediments are pressed

together or cemented together, they become sedimentary rocks. You remember what

we said you can find in sedimentary rocks? You remember fossils? Good job. Fossils

can be found in sedimentary rocks. So again, as those sediments breakdown and

they get cemented together, they are sedimentary rocks. Now, sedimentary rocks or

igneous rocks can become metamorphic rocks. Metamorphic rocks again are existing

types of rocks through heat and pressure, form or change into a new rock, like our

example we have here. Through a lot of heat and pressure, these rocks become

metamorphic rocks. This all happens through a certain process. You remember the

name of that process when rocks are all created? Did you happen to say the rock

cycle? Then, you would be right. The rock cycle is the way that different rocks get

created. It gets created through weathering and erosion, melted and being cooled,

100

and a lot of heat and pressure. So, the next time that you are outside, and you

happen to be looking around at different rocks you find in the ground, see if you

can identify them as igneous, sedimentary, or metamorphic. Well guys, our time is

up for today. I am so glad you were here today, and I hope you enjoyed our time

together. Remember to always be discovering, always be investigating, and always

ask questions. Have an awesome day.

A.3 Raw Text from WHROTV - Bill Nye the

Science Guy - Photosynthesis

This corn is fresh. It’s brand new. But it’s made by the oldest living things on Earth,

plants. �Bill Nye, the science guy ��Bill Nye, the science guy ��Bill, Bill, Bill, Bill �

- Hi, friends, Al Gea here. You wanna talk about selection? We got it all here. You

want something green, take a look at this. Huh, this baby’s nicer than my own lawn

at home, and it is loaded. It’s been completely re-seeded, it’s filled with chlorophyll,

and there are no moles, no mushrooms, no dandelions. This baby is ready to mow!

�Bill, Bill, Bill, Bill, Bill ��Bill, Bill, Bill, Bill, Bill ��Bill Nye, the science guy �

- [Narrator] Brought to you by plants. They’re nothing to sneeze at. - Did you

know that without plants there would be no animals on earth? That includes animals

like us humans. See, in a way, plants make all the air we breathe and all the food we

eat. Different types of plants live all over the world in different places, and plants keep

the whole world alive. Plants are amazing. See, plants take energy from the sun and

make their own food. Now, when we say food, we mean sugar. For example, here’s

an apple, and apples are sweet, but it’s a different flavor from, say, sugar from a sugar

cane or orange juice from an orange or maple syrup from a maple tree. Different types

of plants make different types of sugar. Take a look at this. If we burn the sugar, at

first it’ll turn brown. That’s caramel. It’s sweet, and it’s good, but if we let it keep

going, caramel burns, and it turns black. That’s what we call carbon, and it forms

101

a gas called carbon dioxide. That’s carbon hooked up with oxygen, carbon dioxide.

Now, this carbon dioxide goes up this tube and bubbles in this special detector liquid.

Pretty soon, with enough carbon dioxide, it’s gonna turn a different color, a kind of

orange-y yellow, but it takes a minute.

- [Narrator] Is it soup yet?

- It’s almost almost ready.

- [Narrator] Ah.

- See, the detector chemical has changed color, it’s not blue anymore, it’s orange.

That’s because we were making carbon dioxide gas. It’s the same gas we make all

day, all the time, every time we breathe. Watch, here’s some of the same detector

chemical.

- See, it’s changed color because I’m giving off the same gas as in that chemical

reaction. Now, plants can do the same chemical reaction only the other way around.

Plants take in carbon dioxide from the air and give off oxygen. Take a look at this. It’s

the same blue indicator liquid, and it stays blue because these plants are absorbing

carbon dioxide and giving off oxygen. Now, this process where plants take in water

and sunlight and make food is called photosynthesis. It means making from sunlight.

Now, the key to photosynthesis is a green chemical called chlorophyll. Chlorophyll is

what makes you get grass stains on your pants when you fall down. Now, plants take

in carbon dioxide given off by animals and fungus and some other plants and make

oxygen, which animals like us breathe. See, it’s a great deal for everybody. Mm,

plant’s sugar, it is a good deal.

- When plants make food, they put the oxygen that we breathe into the air. It’s

photosynthesis, and you can see it using this piece of lettuce. Just put the piece of

lettuce in a jar full of water. Then turn the jar over into a bowl. And fill the bowl with

water. Then put the jar in a place where it’ll get lots of sun. Wait about 24 hours.

See those little bubbles? That’s oxygen that the lettuce is making by exchanging

carbon dioxide and water for food. Woo, ain’t that funky now? Hi, how ’bout this?

102

This is nicer than my own lawn at home, and you wouldn’t do this on a Beamer. Hey,

friends, come on down, and see me today!

- Plants have found ways to live all over the earth, even where you least expect it.

- Well, the car’s covered with grass. Let’s go. Plants! You ready?

- [Cameraman] Yeah!

- Plants are everywhere! Yep, it’s a grass-covered vehicle. It’s a plant-mobile is

what it is.

- [Child] Bill Man, the science guy, huh?

- Yeah, yeah.

- [Child] You look different!

- [Motorcyclist] Bill Nye, the science guy!

- [Bill Nye] Hiya, guys.

- [Child] You can’t hardly breathe in here.

- [Bill Nye] Yeah you can! You know they say cars and plants don’t mix. It’s okay!

You know, all living things depend on plants. The car’s not alive, but the grass is.

- [Person In Helicopter] What do you mean what color is it? It’s a grass car, it’s

green!

- See the air rushing over the blades of grass? Taking carbon dioxide from the

air, light from the sun and water, and the grass is making its own food, it’s growing.

It’s also making oxygen for us to breathe. The water, well, we provide that when

it rains or when we hose it down from time to time. It’s science. Science! It’s a

lot of work, it takes a lot of energy to make an apple pie. Just think how much

energy it takes an apple tree to grow an apple. Now, why do they do it, why do

they bother? Well, please, consider the following. See, apple trees are plants, and

they can’t move around. They’re stuck, they’re planted, they’re plants for crying out

loud! So, they have to find a way to spread their seeds out. See, plants don’t want

the young plants growing underneath them, otherwise they’d be competing for the

same patch of soil and the same patch of sunlight. So, plants like apple trees grow

these big, yummy, delicious fruit, bringing tremendous amount of water up to their

103

roots, getting a tremendous amount of energy from the sun, just so that animals will

come along and take the fruit somewhere else. See, the fruit isn’t used for fertilizer,

it’s used only to get animals to carry the seeds to some new place so that the seeds

will grow away from the old trees. That’s the only reason apple trees make apples.

Isn’t that wild? See, plants have all kinds of tricks for moving their seeds around,

like dandelions use the wind. And maple trees make these cool helicopter seeds. See,

plants have this whole thing figured out. Well, it’s a good use of energy when you

think about it. Thanks for joining me and consider the following.

- [Man On TV] Each seed of the dill weed plant is attached to a feather-like carrier.

The wind carries the seeds away to a new area for growth, perhaps the distance of

several miles.

- [Narrator] This is Master Plant Theater.

- Good evening, I am Aleister Appleseed. Fruit, as we all know, is the part of the

plant where the seeds are stored. Plants that want their seeds moved by a hungry bird

or animal produce fruit that is tasty and good-looking. Take for example the tomato.

Thank you. Note the attractive red color and the taste is delicious. An animal would

be inclined to eat this fruit. The seeds would pass through the digestive system and

into the soil, which one hopes would lead to more tomatoes. Thank you. Fruit, an

amazing way that plants have adapted to living on earth.

- [Aleister] Thank you.

- [Child] Here you go. Take that!

A.4 Raw text from Daniel Tiger - Baby is Here:

At the hospital transcript

*Come On, let’s go.

*I’m so excited

*Mom! Hi!

104

*Hi Daniel, I love you so much.

*I love you too. Ugga Mugga

*(gurgles) is that the baby?

*Mm-hmm. Wow, Is it a boy or a girl

*It’s a girl, a girl?

*Ooh, the babies a girl baby

*I have a baby sister, this is grr-ific

*Can I see her?-Yes big brother, go meet your baby sister.

*The baby is in there! let’s look.

*She so-so little

*Do you want to hold her?-can I?

*Sure, come sit in this chair over here

*Okay, I Going to hold the baby.

*Big Brother Daniel, Meet your baby sister

*Hi Baby Sister, I’m your big brother Daniel.

*Ga, Ga? (Gurgling)

*Look at her little noses and her little ears and her little paws.

*Oh look, she’s touching my paw.

*Mom, Dad, Grandpere, Look, she’s touching my paw.

*Maybe she’s saying Hi!

*Hi baby sister, I couldn’t wait to meet you.

*Playing music in the park made the waiting time easier and reading my favorite

baby book, Margaret’s Music.

*Margaret’s Music? I Always loved that book and that nome. Me too?

*I had a Grandma Margaret who was very special to me.

*Do you think.. We should name the baby... Margaret?

*Baby Margaret? I like that!

*You look like a Baby Margaret.

*You Do Look Like A Baby Margaret

105

*Margaret Tiger, I Like the sound of that.

*Margaret it is.

*My Baby Sister Is named Margaret. Hello baby Margaret! Hello!

*I want To give Baby Margaret the book.

*Grandpere, do you have the... present?

*I do! I do!

*Here it is big brother Daniel.

*I’m so excited to give this book to Baby Margaret.

*Here you go Baby Margaret, this is for y—- (wailing) Oh, the baby’s crying

*I can’t give her the book if she’s crying

*I guest I’ll give to her later. Why is Margaret Crying?

*Well... Maybe She’s Hungry.

*I’m going to feed her and then we’ll be ready to go home.

*OK, OK, Daniel Will you help me get the baby Carriage ready?

*It’s Outside.-OK!

*Thank you my helper tiger.

106

Appendix B

Keywords comparison from

different Keyterm extraction

packages

Water Takes Three Forms
Library Keywords extracted
SENCE form, gas, water, liquid, solid, vapor, shape, ice, change, turn
Yake water, liquid, gas, vapor, solid, ice, shape, form, call, change
Rake water vapor becoming liquid, water vapor also, take ice cubes, vapor

loses heat, see liquid water, change liquid water, water vapor, liquid
water, called vapor, often see

Bert water, liquid, gas, boil, evaporate, solid, container, ice, flow, shape
Textacy liquid water, water vapor, water boil, gas form, solid form, gas

escape, ice cube, shape, cup, container
SgRank form, vapor, water, cube, boil, escape, solid, liquid, ice, gas
TextRank water, liquid, form, vapor, gas, ice, solid, change, turn, happen

107

The Invention of Paper
Library Keywords extracted
SENCE paper, china, use, invent, cai, lun, process, emperor, know, person
Yake paper, China, make, Cai, Lun, invent, person, hemp, silk, good
Rake people started using cai lun ’, china named cai lun came, cai

lun used tree bark, papermaking process throughout china, china
around 100 b, cai lun, plant called hemp, process also made, people
used, paper made back

Bert papermaking, paper, invent, inventor, silk, bamboo, china, write,
lun, material

Textacy new paper, China, Cai Lun, B.C. People, turtle shell, emperor,
cheap way, process, tree bark, fishing net

SgRank way, shell, paper, net, bark, People, Lun, turtle, tree, new
TextRank paper, use, China, Lun, Cai, process, invent, emperor, start, good

The History of Juneteenth
Library Keywords extracted
SENCE people, juneteenth, celebrate, enslave, day, holiday, year,

emancipation, proclamation, state
Yake Juneteenth, people, Emancipation, Proclamation, American,

Texas, enslave, June, Union, celebrate
Rake union soldiers finally arrived, story begins years earlier, freed

people began celebrating, many people hope juneteenth, took union
soldiers, slave owners knew, president lincoln gave, nation celebrate
freedom, people even read, african american stories

Bert emancipation, juneteenth, june, proclamation, holiday, lincoln,
slavery, day, slave, 1865

Textacy enslaved people, Juneteenth, important news, national holiday,
african american story, People, date important, historic day,
Emancipation Proclamation, northern state

SgRank story, news, state, soldier, people, important, holiday, american,
War, Proclamation

TextRank people, Juneteenth, celebrate, day, state, American, Emancipation,
news, year, Proclamation

108

The Music of the Cherokee
Library Keywords extracted
SENCE water, use, play, music, cherokee, chant, dance, drum, ritual, sing
Yake Cherokee, chant, music, drum, dance, ritual, sing, play, water, ago
Rake would stretch animal skins, cherokee mainly played flutes, cherokee

use similar melodies, cherokee still play music, drummer would put,
hard outer skin, chorus responds together, cherokee turned gourds,
water would change, many different ways

Bert cherokee, tribe, rhythmic, ceremonial, traditional, ritual, music,
chant, tradition, drum

Textacy Cherokee music tradition, Cherokee chant, Cherokee dance,
Cherokee tribe, Cherokee life, dance music, interesting musical
history, water drum, traditional dance, musical tradition

SgRank skin, music, drum, history, dance, melody, life, word, voice, section
TextRank Cherokee, chant, music, dance, drum, change, use, ritual, play,

instrument

Musical Instruments: Brass Instruments
Library Keywords extracted
SENCE use, musician, brass, instrument, tube, air, length, metal, end,

mouthpiece
Yake instrument, brass, tube, air, length, make, mouthpiece, U-shaped,

musician, end
Rake militaries still use brass instruments, brass instruments include

trumpets, valves make different notes, enters tubes wound round,
brass instruments make sound, brass instruments became used,
brass instrument depends, time period called, looks like gold, brass
instruments

Bert brass, instrument, trumpet, horn, trombone, musician, sound,
metal, musical, loud

Textacy brass instrument, musical instrument, loud, military use, metal
trumpet, bold, shiny metal, tube, small hole, ancient Egypt

SgRank instrument, hole, trumpet, use, period, occasion, metal, horn, cup,
buzz

TextRank instrument, brass, tube, use, air, end, length, mouthpiece, trumpet,
metal

109

Appendix C

Text of passages used for Keyword

extraction comparison in Chapter 7

C.1 Water Takes Three Forms, Grade 2, Topic

area: Science

Text: Water comes in three forms: liquid, solid, and gas. Water can be a liquid. It

flows. It has no shape of its own. A liquid takes the shape of its container. Water can

be a solid. Solids have their own shape. Water in its solid form is called ice. Water

can be a gas. Gas has no shape. Water in its gas form is called vapor. You can see

liquid water after it changes to a solid. Pour water into a cup. Put the cup into the

freezer. The next day, the water will have turned into ice. Ice can change back to

liquid water. Observe this: Take ice cubes from the freezer. Put a few of them on

a plate. They will melt and turn into liquid water. Heat can change liquid water to

a gas. What happens when a pot of water boils? Bubbles begin to form. Then the

water starts to evaporate. You can often see the gas escape as water vapor. Water

vapor also can turn back into a liquid. That happens when the vapor loses heat. The

process of water vapor becoming liquid is called condensation.

110

C.2 Light and Objects, Grade 3, Topic area:

Science

Text:

Have you ever wondered what happens when a line or path of light bumps into

something in its way? Different things may happen depending on what exactly is in

the light’s path. If a path of light hits something that is transparent, most of the

light will pass right through. Air, water, and glass are all transparent. When light

hits these transparent objects, it passes through to the other side. It is almost as if

the object isn’t there. Most buildings have glass windows so that natural sunlight

can travel from the outdoors inside. Have you ever been in a building that has a

glass roof or skylight? Sometimes you can even see blue sky and clouds through the

skylight! Light cannot travel through all materials. If a path of light hits something

that is opaque, the light is absorbed and blocked by the object. It cannot continue

in a straight line through the object. Wood, cardboard, and even a person’s body

are all opaque objects. Light cannot pass through to the other side. Instead, a

shadow is created because the light is absorbed. Look around your classroom. Do

you see transparent objects through which light is passing? Can you also find opaque

objects? You will probably find that your classroom has many more opaque objects

than transparent objects. Do you see any shadows?

C.3 American Government - James Madison: A

Man with a Plan, Grade 4, Topic area: Social

Studies

Text: After winning independence from Britain, the United States’ early days were

rocky ones. The national government set up by the Articles of Confederation was

weak. It could make laws and rules. It could not, however, make the states follow

111

them. Each of the 13 states acted almost like an independent country. Each state had

its own currency. Each state set its own laws. The states weren’t working together for

the good of the nation, so they bickered constantly. No one could agree which states

would pay for the Revolutionary War with Britain. The national government could

not collect taxes from the states. The state governments were simply too strong.

National leaders like George Washington worried out loud. The national government

was “little more than the shadow without the substance,” he said. Things got so

bad that the states finally agreed to take action. A man from Virginia named James

Madison led the way. He called for the Constitutional Convention. Men from twelve

of the thirteen states met at the convention in Philadelphia in 1787 to write the

Constitution. The document would create a new national government. Washington

was there. Other important leaders, like Alexander Hamilton and Benjamin Franklin,

also came. Madison arrived at the convention armed with a plan. Because Madison

was from Virginia, he called it the Virginia Plan. Madison’s plan argued that each

state’s votes in Congress should be based on the number of people living in that

state. Before, each state had gotten one vote in Congress no matter how big or small

it was or how many people lived there. Not everyone agreed with Madison’s ideas.

The delegates at the convention asked for many compromises. Without them, they

wouldn’t sign a final draft of the United States Constitution. These compromises were

difficult to reach. In the end, they helped strengthen the United States government.

Still, Madison’s Virginia Plan was very important. For all his work, James Madison

is known today as the “Father of the Constitution.”

112

Appendix D

SENCE code

assessStudentKnowledge.py

1 import configparser

2 from datetime import datetime

3 import pyinputplus as pyip

4 import pymongo

5 import spacy

6 import tabulate

7 from toolbelt import SentenceSimilarityMeasures

8

9

10 class AssessSentences:

11 db_name = "sence" # name of database

12 sentences_for_passage_collection = "sentences_for_passage"

13 sentence_collection = "sentences" # name of passage collection

14 passage_collection = "passage"

15 keywords_collection = "keywords" # name of keywords collection

16 modified_sentences_collection = "modified_sentences"

113

17 student_response_collection = "student_response"

18 passages_hash = {}

19 sentences_hash = {}

20 keywords_hash = {}

21

22 def __init__(self):

23 self.client = pymongo.MongoClient("mongodb://localhost:27017/"

)

24 self.username = "system"

25 self.sort_type = ’’

26 self.chosen_passage_id = 0

27 self.kw_picked_ids = []

28 self.keywords = []

29 self.sentences = []

30 self.all_sents = {}

31 self.num_keys = 0

32 self.nlp = spacy.load(’en_core_web_sm’)

33 config = configparser.ConfigParser()

34 try:

35 config.read(’../config.ini’)

36 self.sentence_blank = config[’SENTENCES’][’sentence_blank’

]

37 except KeyError:

38 config.read(’config.ini’)

39 self.sentence_blank = config[’SENTENCES’][’sentence_blank’

]

40

114

41 # get the last index from the collection to determine the next ID

to store

42 def get_last_index_from_collection(self, collection_name):

43 new_index = 0

44 num_docs_curs = self.client[AssessSentences.db_name][

collection_name].find(

45 {}, {

46 "_id": 1}).sort("_id", pymongo.DESCENDING).limit(1)

47 num_docs_curs_l = list(num_docs_curs)

48 if len(num_docs_curs_l) > 0:

49 new_index = num_docs_curs_l[0][’_id’] + 1

50 return new_index

51

52 def get_instructor_choices(self):

53 kw_ids_list = set()

54 passage_ids_list = []

55 counter = 0

56 # find unique values of passage num, sort type and keywords

from sentences_for_passage collection.

57 # we need unique values because there are multiple rows for

simple, complex, medium sentences for each (passage_num, sort_type

, keywords) set

58 db_res = self.client[AssessSentences.db_name][AssessSentences.

sentences_for_passage_collection].aggregate([

59 {"$group": {"_id": {"passage_num": "$passage_num", "sort":

"$sort", "keywords": "$keywords"}}}

60])

61 db_res_list = list(db_res)

115

62 for item in db_res_list:

63 sent_details = item[’_id’]

64 passage_ids_list.append(sent_details[’passage_num’])

65 kw_ids_list.update(sent_details[’keywords’])

66 # go to passage table and get all the passage titles

67 passage_info = self.client[AssessSentences.db_name][

AssessSentences.passage_collection].find(

68 {’_id’: {’$in’: passage_ids_list}}, {"title": 1}).sort([("

title", pymongo.ASCENDING)])

69 for item in passage_info:

70 self.passages_hash[item[’_id’]] = item[’title’]

71 # make a list of all the keyword ids

72 # go to keywords collection and get all the keywords

73 kw_info = self.client[AssessSentences.db_name][AssessSentences

.keywords_collection].find(

74 {’_id’: {’$in’: list(kw_ids_list)}}, {"keyword": 1})

75 # add all keywords to a kw_id: kw_word hash

76 for item in kw_info:

77 self.keywords_hash[item[’_id’]] = item[’keyword’]

78 # display to user

79 table = []

80 table_headers = ["Index number", "Title", "Keywords", "Sort

type"]

81 for sent_item in db_res_list:

82 item = sent_item[’_id’]

83 # get the passage ID, passage title, keywords chosen and

sort type

84 kw_str = ’’

116

85 p_title = self.passages_hash[item[’passage_num’]]

86 for kw_item in item[’keywords’]:

87 kw_str += " " + self.keywords_hash[kw_item]

88 sort_type = item[’sort’]

89 table.append([counter, p_title, kw_str, sort_type])

90 counter += 1

91 # get default and user supplied keywords for selected chapter

92 print(tabulate.tabulate(table, table_headers))

93 choice = pyip.inputNum(

94 "Enter the ID number (first column) of the chapter you

want to run the assessment for today. \n "

95 "Please note that if you do not find the chapter you would

like to use, you might need to run "

96 "sentence generation for them first before this step: ")

97 chosen_item = db_res_list[choice]

98 chosen_passage = chosen_item[’_id’]

99 self.sort_type = chosen_passage[’sort’]

100 self.chosen_passage_id = chosen_passage[’passage_num’]

101 self.kw_picked_ids = chosen_passage[’keywords’]

102

103 def get_sentences(self):

104 sent_ids = []

105 mod_sent_ids = []

106 simple_sents = []

107 medium_sents = []

108 complex_sents = []

109 other_sents = []

110 toolbelt = SentenceSimilarityMeasures()

117

111 # add all the keywords to the global variable

112 self.keywords = [self.keywords_hash[kid] for kid in self.

kw_picked_ids]

113 # make a list of all the sentence system ids

114 # go to sentences collection and get all the system sentences

115 db_res = (self.client[AssessSentences.db_name][AssessSentences

.sentences_for_passage_collection].find

116 ({’passage_num’: self.chosen_passage_id, ’sort’:

self.sort_type,

117 ’keywords’: {’$in’: self.kw_picked_ids}}))

118 db_res_list = list(db_res)

119 # create a list of simple, medium and complex sentences with

the following attributes

120 # id, sentence, keywords in order of appearance in sentence,

sentence with blanks, response of student

121 for item in db_res_list:

122 # check if sentence is system or user generated and put in

appropriate bucket

123 sent_ids.append(item["sentence_id"]) if item[’

sentence_type’] == "system" else mod_sent_ids.append(

124 item["sentence_id"])

125

126 sentences = self.client[AssessSentences.db_name][

AssessSentences.sentence_collection].find(

127 {’_id’: {’$in’: sent_ids}})

128 sentences_list = list(sentences)

129 if len(mod_sent_ids) > 0:

118

130 mod_sentences = (self.client[AssessSentences.db_name][

AssessSentences.modified_sentences_collection].find

131 ({’_id’: {’$in’: mod_sent_ids}}))

132 for item in mod_sentences:

133 self.sentences_hash[’M’ + str(item[’_id’])] = item[’

modified_sentence’]

134 for item in sentences_list:

135 self.sentences_hash[item[’_id’]] = item[’sentence’]

136 for item in db_res_list:

137 s = dict(s_id=item[’sentence_id’],

138 sentence=self.sentences_hash[item[’sentence_id’]]

if item[’sentence_type’] == "system"

139 else self.sentences_hash[’M’ + str(item[’

sentence_id’])])

140 s[’sent_question’] = item[’sentence_with_spaces’]

141 s[’sent_response’] = ’’

142 s[’asked’] = "no"

143 s[’sentence_source’] = item[’source’]

144 s[’kw_tok_pos’] = toolbelt.find_match_return_tok_pos(s[’

sentence’], self.keywords)

145 if item[’source’] == ’other’: # add the sentences from

other passages to their own bucket

146 other_sents.append(s)

147 elif item[’difficulty_level’] == ’simple’: # identify

simple sentences

148 simple_sents.append(s)

149 elif item[’difficulty_level’] == ’medium’: # identify

medium sentences

119

150 medium_sents.append(s)

151 else:

152 complex_sents.append(s) # identify complex sentences

153 self.all_sents[’simple’] = simple_sents

154 self.all_sents[’medium’] = medium_sents

155 self.all_sents[’complex’] = complex_sents

156

157 def check_num_inputs(self, response):

158 num_allowed = self.num_keys

159 if len(response) > 0 and len(response.split()) > num_allowed:

160 raise Exception("You entered too many words. Try again.")

161 elif len(response) > 0 and len(response.split()) < num_allowed

:

162 raise Exception("You did not enter enough words. Try again

.")

163

164 return response

165

166 def check_if_sentence_present(self, sentence):

167 all_sents = list(self.sentences)

168 lower_sents = [s.lower() for s in all_sents]

169 if sentence in lower_sents:

170 return True

171 else:

172 return False

173

174 # this method compares the lemmatized versions of two sentences to

make sure that they are the same in the base form

120

175 def compare_two_sentences(self, sent1, sent2):

176 sent1_nlp = self.nlp(sent1)

177 sent2_nlp = self.nlp(sent2)

178 sent1_toks = " ".join([tok.lemma_ for tok in sent1_nlp])

179 sent2_toks = " ".join([tok.lemma_ for tok in sent2_nlp])

180 if sent1_toks == sent2_toks:

181 return True

182 else:

183 return False

184

185 def do_assessment(self):

186 # TODO: scaffolding

187 # show all keywords

188 print("Use one of the following words for each blank provided:

", ", ".join(self.keywords))

189 if "simple" in self.all_sents.keys():

190 for ind, sent in enumerate(self.all_sents[’simple’]):

191 self.num_keys = len(sent[’kw_tok_pos’])

192 self.all_sents[’simple’][ind][’sent_response’] = pyip.

inputCustom(

193 self.check_num_inputs, prompt=sent[’sent_question’

])

194 if "medium" in self.all_sents.keys():

195 for ind, sent in enumerate(self.all_sents[’medium’]):

196 self.num_keys = len(sent[’kw_tok_pos’])

197 self.all_sents[’medium’][ind][’sent_response’] = pyip.

inputCustom(

121

198 customValidationFunc=self.check_num_inputs, prompt

=sent[’sent_question’])

199 if "complex" in self.all_sents.keys():

200 for ind, sent in enumerate(self.all_sents[’complex’]):

201 self.num_keys = len(sent[’kw_tok_pos’])

202 self.all_sents[’complex’][ind][’sent_response’] = pyip

.inputCustom(

203 customValidationFunc=self.check_num_inputs, prompt

=sent[’sent_question’])

204

205 def check_each_kw(self, sents_to_check):

206 evaluated_sentences = []

207 toolbelt = SentenceSimilarityMeasures()

208 for ind, s in enumerate(sents_to_check):

209 kw_tok_list = list(s[’kw_tok_pos’].values())

210 updated_sentence = s[’sent_question’]

211 for kw_ind, kw in enumerate(s[’sent_response’].split()):

212 updated_sentence = toolbelt.replace_words_in_sentence(

updated_sentence, kw, kw_tok_list[kw_ind])

213 if self.check_if_sentence_present(updated_sentence):

214 # save results with og sentence, keywords, student

sentence, right / wrong?

215

216 eval_sent = {’og_sentence’: s[’sentence’], ’

response_sentence’: updated_sentence,

217 ’passage’: self.passages_hash[self.

chosen_passage_id], ’sort_type’: self.sort_type,

122

218 ’source’: s[’sentence_source’], ’correct’

: True}

219 else:

220 doc = self.nlp(updated_sentence)

221 rep_sentence = updated_sentence

222 kws = s[’kw_tok_pos’].keys()

223 kw_tok_pos = s[’kw_tok_pos’] # get the word positions

of the keywords in the sentence

224 for kw_word, kw_pos in kw_tok_pos.items():

225 typo_correct = toolbelt.typos_closest_match(doc[

kw_pos].lemma_, kws)

226 if typo_correct.lower() == kw_word.lower():

227 rep_sentence = toolbelt.

replace_words_in_sentence(updated_sentence, typo_correct, kw_pos)

228 doc = self.nlp(rep_sentence)

229 if self.compare_two_sentences(rep_sentence.lower(), s[

’sentence’].lower()):

230 eval_sent = {’og_sentence’: s[’sentence’], ’

response_sentence’: updated_sentence,

231 ’passage’: self.passages_hash[self.

chosen_passage_id], ’sort_type’: self.sort_type,

232 ’source’: s[’sentence_source’], ’

correct’: True}

233 else:

234 eval_sent = {’og_sentence’: s[’sentence’], ’

response_sentence’: updated_sentence,

235 ’passage’: self.passages_hash[self.

chosen_passage_id], ’sort_type’: self.sort_type,

123

236 ’source’: s[’sentence_source’], ’

correct’: False}

237 evaluated_sentences.append(eval_sent)

238 return evaluated_sentences

239

240 # this method stores results of student responses in the student

response collection with necessary metadata

241 def save_results_to_db(self, sentences_to_save, std_name,

eval_time):

242 index_beg = self.get_last_index_from_collection(self.

student_response_collection)

243 if len(sentences_to_save) > 0:

244 for s in sentences_to_save:

245 try:

246 insert_row = {"_id": index_beg,

247 "student_name": std_name,

248 "time_assessed": eval_time,

249 "sentence_original": s[’og_sentence’

],

250 "sentence_response": s[’

response_sentence’],

251 "passage": s[’passage’],

252 "sort_type": s[’sort_type’],

253 "keywords": self.keywords,

254 "source": s[’source’],

255 "correct": s[’correct’]

256

257 }

124

258 self.client[self.db_name][

259 self.student_response_collection].insert_one(

260 insert_row)

261 index_beg += 1

262 except pymongo.errors:

263 print("Could not insert %s in database.")

264

265 def evaluate_responses(self):

266 self.sentences = self.sentences_hash.values()

267 eval_time = datetime.today().strftime(’%Y-%m-%d %H:%M:%S’)

268 std_name = pyip.inputStr("Please enter your (student’s) name:

")

269 if ’simple’ in self.all_sents.keys():

270 results_to_save_simp = self.check_each_kw(self.all_sents[’

simple’])

271 self.save_results_to_db(results_to_save_simp, std_name,

eval_time)

272 if ’medium’ in self.all_sents.keys():

273 results_to_save_med = self.check_each_kw(self.all_sents[’

medium’])

274 self.save_results_to_db(results_to_save_med, std_name,

eval_time)

275 if ’complex’ in self.all_sents.keys():

276 results_to_save_complex = self.check_each_kw(self.

all_sents[’complex’])

277 self.save_results_to_db(results_to_save_complex, std_name,

eval_time)

278 print("Results have been saved.")

125

279 return 0

280

281

282 if __name__ == "__main__":

283 assess_sentences = AssessSentences()

284 assess_sentences.get_instructor_choices()

285 assess_sentences.get_sentences()

286 assess_sentences.do_assessment()

287

288 sents = assess_sentences.evaluate_responses()

config.ini

1 [FILE_PATHS]

2 tools = /Users/tsamuel/Dropbox/GradSchool/thesisWork/tools/stanza/

3 base_path = /Users/tsamuel/Dropbox/GradSchool/thesisWork/data/html/

4 grade4_json = grade4_vocab.json

5 grade5_json = /grade5.json

6 base_erupt_path = /Users/tsamuel/Dropbox/GradSchool/thesisWork/data/

erupt/

7 base_erupt_chapters_1_2 = erupt_chapters_1_2.txt

8 base_erupt_passages = erupts_chapters_1_2.json

9 base_erupt_high_freq_words = erupt_high_freq_words_txtrank.json

10 erupt_ngrams_sentences = erupt_ngram_sentences.json

11 base_ngrams_sentences = base_ngrams_sentences.json

12 tier_words_path = /Users/tsamuel/Dropbox/GradSchool/thesisWork/

tier_words/

13

126

14 [SENTENCES]

15 sentence_blank = -----------

16 num_sentences_to_return_passage = 2

17 num_sentences_to_return_other = 1

18 # data is from https://universaldependencies.org/docs/en/dep/

19 sentence_location_filter_simple = nsubj nsubjpass csubj csubjpass ROOT

20 sentence_location_filter_medium = dobj pobj obj

config.json

1 {

2 "PENN_TREEBANK": {

3 "penn_treebank_orig" : {

4 "CC": "Coordinating conjunction",

5 "CD": "Cardinal number",

6 "DT": "Determiner",

7 "EX": "Existential there",

8 "FW": "Foreign word",

9 "IN": "Preposition or subordinating conjunction",

10 "JJ": "Adjective",

11 "JJR": "Adjective, comparative",

12 "JJS": "Adjective, superlative",

13 "LS": "List item marker",

14 "MD": "Modal",

15 "NN": "Noun, singular or mass",

16 "NNS": "Noun, plural",

17 "NNP": "Proper noun, singular",

18 "NNPS": "Proper noun, plural",

127

19 "PDT": "Predeterminer",

20 "POS": "Possessive ending",

21 "PRP": "Personal pronoun",

22 "RB": "Adverb",

23 "RBR": "Adverb, comparative",

24 "RBS": "Adverb, superlative",

25 "RP": "Particle",

26 "SYM": "Symbol",

27 "TO": "to",

28 "UH": "Interjection",

29 "VB": "Verb, base form",

30 "VBD": "Verb, past tense",

31 "VBG": "Verb, gerund or present participle",

32 "VBN": "Verb, past participle",

33 "VBP": "Verb, non-3rd person singular present",

34 "VBZ": "Verb, 3rd person singular present",

35 "WDT": "Wh-determiner",

36 "WP": "Wh-pronoun",

37 "WRB": "Wh-adverb "

38 },

39 "penn_treebank_condensed" : {

40 "CC": "Conjunction",

41 "CD": "Number",

42 "DT": "Determiner",

43 "EX": "Existential there",

44 "FW": "Foreign word",

45 "IN": "Preposition",

46 "JJ": "Adjective",

128

47 "JJR": "Adjective",

48 "JJS": "Adjective",

49 "LS": "List item marker",

50 "MD": "Modal",

51 "NN": "Noun",

52 "NNS": "Noun",

53 "NNP": "Proper noun",

54 "NNPS": "Proper noun",

55 "PDT": "Predeterminer",

56 "POS": "Possessive ending",

57 "PRP": "Personal pronoun",

58 "RB": "Adverb",

59 "RBR": "Adverb",

60 "RBS": "Adverb",

61 "RP": "Particle",

62 "SYM": "Symbol",

63 "TO": "to",

64 "UH": "Interjection",

65 "VB": "Verb",

66 "VBD": "Verb",

67 "VBG": "Verb",

68 "VBN": "Verb",

69 "VBP": "Verb",

70 "VBZ": "Verb",

71 "WDT": "Wh-determiner",

72 "WP": "Wh-pronoun",

73 "WRB": "Wh-adverb "

74 }

129

75 }}

createSystemSentencesforMongo.py

1 # This script does the following

2 # i. Accepts an input text

3 # ii. For each sentence in the input text, identified keywords from

mongo keywords_sys

4 # iii. Identifies parts of speech in the sentence and complexity of

sentence

5 # iv. Adds sentence to database

6 import configparser

7 import json

8 import re

9

10 import pyinputplus as pyip

11 import pymongo

12 import spacy

13

14 from customStanza import Stanza

15

16 config = configparser.ConfigParser()

17 config.read(’../config.ini’)

18 tools_path = config[’FILE_PATHS’][’tools’]

19

20 with open(’../config.json’) as fc:

21 config_json = json.load(fc)

22

130

23 nlp = spacy.load("en_core_web_sm")

24 client = pymongo.MongoClient("mongodb://localhost:27017/")

25 db_name = "sence" # name of database

26 passage_collection = "passage" # name of passage collection

27 keywords_collection = "keywords"

28 sentences_collection = "sentences"

29 sNLP = Stanza()

30

31

32 def return_key_ids(kw_cursor_list, keyws): # returns list of ids for

keywords provided

33 kw_ids = []

34 for kw_item in kw_cursor_list:

35 if kw_item[’keyword’] in keyws:

36 kw_ids.append(kw_item[’_id’])

37 return kw_ids

38

39

40 def main():

41 # retrieve all passage titles from database

42 db_res = client[db_name][passage_collection].find({}, {"title":

1})

43

44 print("Index number \t Title")

45 for item in db_res:

46 print("%d \t %s" % (item[’_id’], item[’title’]))

47 print("Enter the Index number of the chapter you want to use today

:")

131

48 # TODO: error checking for wrong index; use pyip smarter

49 chap_choice = pyip.inputNum()

50 # check if sentences have already been generated for this passage.

If they have, do not re-generate

51 already_gen = client[db_name][sentences_collection].

count_documents({’passage_id’: int(chap_choice)})

52 if already_gen == 0:

53 # retrieve last index of key_words_user_collection

54 num_docs = client[db_name][sentences_collection].

count_documents({})

55 index_st = num_docs + 1

56 # retrieve passage chosen by user from db

57 mn_passage = client[db_name][passage_collection].find({’_id’:

chap_choice})

58 passage = mn_passage[0][’text’]

59 # retrieve system keywords of passage from db

60 passage_kw = client[db_name][keywords_collection].find(

61 {’passage_num’: {’$in’: [int(chap_choice)]}, ’inserted_by’

: ’system’},

62 {’keyword’: 1, ’_id’: 1})

63 passage_kw_list = list(passage_kw)

64 # check if there are keywords already generated

65 # if not, do not proceed

66 if len(passage_kw_list) > 0:

67

68 # create a | separated list of keywords to use for regex

searching below

132

69 kw_string_sep = ’|’.join(str(w[’keyword’]) for w in

passage_kw_list)

70 print(kw_string_sep)

71

72 # retrieve condensed human-readable POS tags from config

file

73 pos_cond = config_json[’PENN_TREEBANK’][’

penn_treebank_condensed’]

74

75 doc = nlp(passage)

76 pos_not_found = []

77 for sentence in doc.sents:

78 # lemmatize the sentence

79 lm_sentence = sNLP.lemmatize_sentence(sentence.text)

80

81 # retrieve all POS in sentence [output is tuple of POS

of each word in sentence]

82 pos_str = sNLP.pos(sentence.text)

83

84 # retrieve unique value and condensed human-readable

version of POS; if check to ignore punc.

85 pos_set = set()

86 for pos in pos_str:

87 if pos.isalnum():

88 try:

89 pos_set.add(pos_cond[pos].lower())

90 except KeyError as ke:

91 pos_not_found.append(ke.args[0])

133

92

93 # retrieve all the keywords matched in the lemmatized

sentence

94 matched_kw = re.findall(kw_string_sep, lm_sentence,

flags=re.IGNORECASE)

95 # convert keywords to lower case and get unique values

96 matched_kw_set = set(keyw.lower() for keyw in

matched_kw)

97 sent_length = len(sentence.text.strip().split())

98

99 # retrieve ids of identified keywords

100 keywords_ids = return_key_ids(passage_kw_list,

matched_kw_set)

101 # insert into database

102 if len(matched_kw_set) > 0 and len(keywords_ids) > 0:

103 insert_dict = {"_id": index_st,

104 "sentence": sentence.text,

105 "keywords_sys_ids": keywords_ids,

106 "sentence_length": sent_length,

107 "passage_id": chap_choice,

108 "pos_present": sorted(pos_set)

109 }

110

111 try:

112 client[db_name][sentences_collection].

insert_one(insert_dict)

113 index_st += 1

114 except pymongo.errors.DuplicateKeyError:

134

115 print("Sentence %s already in database" %

sentence.text)

116 else:

117 print("Sentence %s did not have any of the

keywords in it" % sentence.text)

118

119 print("Part of speech tags matches not identified: \n")

120 if len(pos_not_found) > 1:

121 print(set(pos_not_found))

122

123 else:

124 print(

125 "No key words available for the given passage. Please

generate key words first and then run this module again.")

126 else:

127 sentences = client[db_name][sentences_collection].find(

128 {’passage_id’: int(chap_choice)},

129 {’sentence’: 1, ’_id’: 1})

130 sentences_list = list(sentences)

131 print("\n System sentences have already been generated for

this passage. They are: ")

132 for sent in sentences_list:

133 print(sent[’sentence’])

134

135

136 if __name__ == "__main__":

137 main()

135

customStanza.py

1 import configparser

2

3 from nltk import Tree

4 from stanza.pipeline.core import Pipeline

5 from collections import defaultdict

6

7

8 class Stanza:

9 def __init__(self):

10 config = configparser.ConfigParser()

11 try:

12 config.read(’../config.ini’)

13 tools_path = config[’FILE_PATHS’][’tools’]

14 except KeyError:

15 config.read(’config.ini’)

16 tools_path = config[’FILE_PATHS’][’tools’]

17 self.nlp = Pipeline(lang=’en’, logging_level=’WARN’,

processors=’tokenize,pos,lemma,ner,depparse, constituency’,

18 model_dir=tools_path)

19

20 def word_tokenize(self, sentence):

21 doc = self.nlp(sentence)

22 return [token.text for sent in doc.sentences for token in sent

.tokens]

23

24 def pos(self, sentence):

25 doc = self.nlp(sentence)

136

26 return [word.xpos for sent in doc.sentences for word in sent.

words]

27

28 def ner(self, sentence):

29 doc = self.nlp(sentence)

30 return [ent.type for sent in doc.sentences for ent in sent.

ents]

31

32 def parse(self, sentence):

33 doc = self.nlp(sentence)

34 return [sent.deptree for sent in doc.sentences]

35

36 def constituency_parse(self, sentence):

37 doc = self.nlp(sentence)

38 return doc[0].constituency

39

40 def lemmatize_sentence(self, sentence):

41 doc = self.nlp(sentence)

42 lm_sent = " ".join([word.lemma for sent in doc.sentences for

word in sent.words])

43 return lm_sent

import tier words.py

1 # This file imports .txt files with tier word lists to the database.

2 # Files are expected to have tier words with one word per line

3 # User is asked if the words are tier 2 or tier 3 words

4 # User is asked for username inserting the words

137

5

6 import configparser

7 import pyinputplus as pyip

8 import pymongo

9

10

11 class ImportTierWords:

12 def __init__(self):

13 self.client = pymongo.MongoClient("mongodb://localhost:27017/"

)

14 config = configparser.ConfigParser()

15 config.read(’../config.ini’)

16 self.tier_words_path = config[’FILE_PATHS’][’tier_words_path’]

17 self.db_name = "sence" # name of database

18 self.tier_words_collection = "tier_words"

19 self.word_tier = 3

20 self.inserted_by = "system"

21 self.grade = "4"

22

23 def insert_tier_words(self):

24 # get the file name

25 is_success = False

26 while is_success is False:

27 tier_file_name = pyip.inputStr("Please enter filename of

file: ")

28 file_name_with_path = self.tier_words_path+"/"+

tier_file_name

29 print(file_name_with_path)

138

30 try:

31 file = open(file_name_with_path, ’r’)

32 lines = file.readlines()

33 is_success = True

34 self.grade = pyip.inputStr("Please enter grade level

of words. NA if not available.: ")

35 file.close()

36 except FileNotFoundError:

37 print("File name %s does not exist. Please try again.

" % file_name_with_path)

38

39 num_docs = self.client[self.db_name][self.

tier_words_collection].count_documents({})

40 index_st = 1 if(num_docs == 0) else (num_docs+1)

41 for line in lines:

42 try:

43 insert_dict = {"_id": index_st,

44 "word": line.strip().lower(),

45 "tier": self.word_tier,

46 "grade": self.grade,

47 "inserted_by": self.inserted_by

48 }

49 self.client[self.db_name][self.tier_words_collection].

insert_one(insert_dict)

50 index_st += 1

51

52 except pymongo.errors.DuplicateKeyError:

139

53 print("Word %s is already in database. Skipping." %

line.strip())

54

55

56 if __name__ == "__main__":

57 tier_words = ImportTierWords()

58 tier_words.insert_tier_words()

insertDefKeywordstoMongoDB.py

1 # This file takes a chapter from mongoDB and does the following

2 # i. Creates default keywords

3 # inserts them in MongoDB looking for exceptions and handles them

appropriately

4 import logging

5 from collections import Counter

6 from string import punctuation

7 import pyinputplus as pyip

8 import pymongo

9 import spacy

10

11 from customStanza import Stanza

12 nlp = spacy.load("en_core_web_sm", disable=[’parser’, ’ner’]) # only

load pos tagger

13 client = pymongo.MongoClient("mongodb://localhost:27017/")

14 db_name = "sence" # name of database

15 passage_collection = "passage" # name of passage collection

16 keywords_collection = "keywords" # name of keywords collection

140

17 sNLP = Stanza()

18

19

20 def get_hotwords(text):

21 result = []

22 pos_tag = [’PROPN’, ’ADJ’, ’NOUN’, ’VERB’, ’ADV’] # proper noun,

adjective, noun, verb, adverb

23 lesson = nlp(text.lower())

24 for token in lesson:

25 if token.text in nlp.Defaults.stop_words or token.text in

punctuation:

26 continue

27 if token.pos_ in pos_tag:

28 result.append(token.text)

29 return result

30

31

32 def get_spacy_keywords(text):

33 output = (get_hotwords(text))

34 most_common_list = Counter(output).most_common(10) # prints the

top 10 most common words with frequencies

35 keywords = (list(zip(*most_common_list))[0]) # retrieves only

words without frequencies numbers

36 return keywords

37

38

39 def main():

40 # find title, grade and id of all chapters in db

141

41 db_res = client[db_name][passage_collection].find({}, {"title": 1,

"grade": 1})

42 print("{:<12} {:<60} {:<10}".format(’Index number’, ’Title’, ’

Grade’))

43 for item in db_res:

44 print("{:<12} {:<60} {:<10}".format(item[’_id’], item[’title’

], item[’grade’]))

45 print("Enter the Index number of the chapter you want to create

default keyword list for today: ")

46 chap_choice = pyip.inputNum()

47

48 num_docs_passage = client[db_name][keywords_collection].

count_documents({’passage_num’: int(chap_choice)})

49 num_docs_collection = client[db_name][keywords_collection].

count_documents({})

50

51 passage = client[db_name][passage_collection].find({’_id’:

chap_choice})

52 chapter = passage[0][’text’]

53 if num_docs_passage > 0:

54 insertdicts = []

55 passage_kw = client[db_name][keywords_collection].find(

56 {’passage_num’: {’$in’: [int(chap_choice)]}, ’inserted_by’

: ’system’},

57 {’keyword’: 1, ’_id’: 1})

58 print("\nSystem Keywords for this passage are: ")

59 kw_str = ’ ’.join(item[’keyword’] for item in passage_kw)

60 print("%s\n\n" % kw_str)

142

61 passage_others_kw = client[db_name][keywords_collection].find(

62 {’passage_num’: {’$in’: [int(chap_choice)]}, ’inserted_by’

: {’$ne’: ’system’}}, {’keyword’: 1, ’_id’: 1})

63 passage_others_kw = list(passage_others_kw)

64 if len(list(passage_others_kw)) > 0:

65 print("Others have added the following keywords: ")

66 kw_others_str = ’ ’.join(item[’keyword’] for item in

passage_others_kw)

67 print("%s\n\n" % kw_others_str)

68 yesno = pyip.inputYesNo(

69 "Would you like to input other custom keywords? ")

70 if yesno == ’yes’:

71 inputkeywords = pyip.inputStr("Please input your keywords

separated by a space. ")

72 custkeywords = inputkeywords.split()

73 inpusername = pyip.inputStr("Please enter your username: "

)

74 for custword in custkeywords:

75 if custword in chapter:

76 insertdicts.append({"keyword": custword.strip(), "

passage_num": chap_choice,

77 "inserted_by": inpusername.

strip()})

78 else:

79 print("Keyword %s not in text, and will therefore

be skipped. \n" % custword)

80

81 else:

143

82 insertdicts = []

83

84 lemma_chapter = sNLP.lemmatize_sentence(chapter)

85 # get spacy keywords

86 spacy_keywords = list(get_spacy_keywords(lemma_chapter))

87 print("Keywords identified for this chapter are: %s" % (’ ’.

join(spacy_keywords)))

88 # insert each keyword into mongodb

89 for kw in spacy_keywords:

90 insertdicts.append({"keyword": kw, "passage_num":

chap_choice, "inserted_by": "system"})

91

92 # insert or update depending on if the keyword is already present

in the collection

93 index_st = num_docs_collection + 1

94 for insert_dict in insertdicts:

95 try:

96 client[db_name][keywords_collection].insert_one(

97 {"_id": index_st, "keyword": insert_dict["keyword"], "

passage_num": [insert_dict["passage_num"]],

98 "inserted_by": insert_dict["inserted_by"]})

99 index_st += 1 # increase id by 1 after insertion

100

101 except pymongo.errors.DuplicateKeyError:

102 client[db_name][keywords_collection].update_one({"keyword"

: insert_dict["keyword"]},

103 {’

$addToSet’: {"passage_num": insert_dict["passage_num"]}})

144

104

105

106

107 if __name__ == "__main__":

108 main()

highFrequencyWordsMethodsComparator.py

1 # this script does the following

2 # grabs text from the text file with title

3 # gets grade of lesson

4 # stores in mongoDB passage collection

5

6 import pyinputplus as pyip

7 import pymongo

8 import spacy

9

10 client = pymongo.MongoClient("mongodb://localhost:27017/")

11 db_name = "sence" # name of database

12 passage_collection = "passage" # name of passage collection

13 num_docs_cursor = client[db_name][passage_collection].find({}, {"_id":

1}).sort("_id", pymongo.DESCENDING).limit(1)

14 # check to see if any documents are already present in the collection

15 # if none, start the index at 1

16 if client[db_name][passage_collection].count_documents({}) == 0:

17 index_st = 1

18 else:

19 # else start the index at one from the prev entry’s index

145

20 num_docs = num_docs_cursor.next()

21 index_st = num_docs[’_id’] + 1

22

23

24 # return count of number of words ignoring punctuation

25 def word_count(sentences):

26 words = 0

27 for sentence in sentences:

28 tokens = [tok.text for tok in sentence if not tok.is_punct]

29 words += len(tokens)

30 return words

31

32

33 def max_sentence_length(sentences):

34 max_l = 0

35 for sentence in sentences:

36 num_words = len([tok.text for tok in sentence if not tok.

is_punct])

37 if num_words > max_l:

38 max_l = num_words

39 return max_l

40

41

42 yes_no_choice = pyip.inputYesNo("Would you like to import a lesson

today? ")

43 if yes_no_choice == ’yes’:

44 lesson_title = pyip.inputStr("Please enter the title of the text:

")

146

45 lesson_grade = pyip.inputNum("Please enter the lesson grade: ")

46 input_form = pyip.inputMenu([’File path’, ’Enter text here’],

47 prompt="Please enter the number of the

way you would like to import the lesson: \n ",

48 numbered=True)

49 if input_form == "File path":

50 text_blob = ’’

51 file_ip_yesno = "yes"

52 while file_ip_yesno == "yes":

53 name = pyip.inputStr("Enter file name with the full path (

eg: C:\path_to_file\documentname.extension): ")

54 filename = name.strip()

55 try:

56 with open(filename, ’r’) as f:

57 content = f.read()

58 for line in content:

59 text_blob += line.replace("\n", "")

60 except FileNotFoundError as e:

61 file_ip_yesno = pyip.inputYesNo(

62 "We did not find a file at that location. Would

you like to try again? Please input yes or no: ")

63

64 else:

65 text_blob = input("Please enter the lesson text here:\n")

66 if text_blob:

67 clean_text = text_blob.strip()

68 nlp = spacy.load(’en_core_web_sm’)

69 doc = nlp(clean_text)

147

70 sents = list(doc.sents)

71 word_c = word_count(sents)

72 sentence_count = len(sents)

73 average_sent_length = round(float(word_c / sentence_count), 1)

74 max_length = round(max_sentence_length(sents), 1)

75 media = pyip.inputMenu([’textbook’, ’storybook’, ’tvshow’,],

76 prompt="Please enter the number next to

the type of media of the text you have entered: \n ",

77 numbered=True)

78 insert_dict = {"_id": index_st,

79 "grade": lesson_grade,

80 "text": clean_text,

81 "title": lesson_title.strip(),

82 "media": media.strip(),

83 "total_words": word_c,

84 "total_sentences": sentence_count,

85 "avg_sentence_length": average_sent_length,

86 "max_sentence_length": max_length

87 }

88 try:

89 client[db_name][passage_collection].insert_one(

90 insert_dict)

91 index_st += 1

92 except Exception as e:

93 print("Exception occurred while inserting: %s" % e)

highFrequencyWordsMethodsComparator.py

148

1 import textacy

2 from keybert import KeyBERT

3 import pyinputplus as pyip

4 from nltk.tokenize import RegexpTokenizer

5 from sentences.customStanza import Stanza

6 from rake_nltk import Rake

7 from nltk.corpus import stopwords

8 import spacy

9 from string import punctuation

10 import pymongo

11 from textacy.extract import keyterms as kt

12 from textRankforKeyterm import TextRank4Keyword

13 from yake import KeywordExtractor

14

15

16 sp_nlp = spacy.load("en_core_web_sm", disable=[’parser’, ’ner’]) #

only load pos tagger

17 client = pymongo.MongoClient("mongodb://localhost:27017/")

18 db_name = "sence" # name of database

19 passage_collection = "passage" # name of passage collection

20 tokenizer = RegexpTokenizer(r’\w+’)

21 keywords_collection = "keywords" # name of keywords collection

22 rake_nltk_var = Rake()

23 # yake instance with max 2 n-grams, some duplication (0.1 is none, 0.9

is ’allow’) and top 10 keywords

24 kw_extractor_yake = KeywordExtractor(lan=’en’, n=1, dedupLim=0.5, top

=10, features=None)

25 kw_extractor_bert = KeyBERT()

149

26 tr4w = TextRank4Keyword()

27

28 stop_words = set(stopwords.words(’english’))

29

30

31 def get_hotwords(text):

32 sNLP = Stanza()

33 kw_pos_dict = {}

34 pos_tag = [’PROPN’, ’ADJ’, ’NOUN’, ’VERB’, ’ADV’] # proper noun,

adjective, noun, verb, adverb

35

36 lesson = sNLP.nlp(text.lower())

37 for sent in lesson.sentences:

38 for token in sent.words:

39 if token.text in punctuation:

40 continue

41 if token.upos in pos_tag:

42 kw_pos_dict[token.text] = token.upos

43 return kw_pos_dict

44

45

46 def main():

47 # find title, grade and id of all chapters in db

48 db_res = client[db_name][passage_collection].find({}, {"title": 1,

"grade": 1})

49 print("{:<12} {:<60} {:<10}".format(’Index number’, ’Title’, ’

Grade’))

50 for item in db_res:

150

51 print("{:<12} {:<60} {:<10}".format(item[’_id’], item[’title’

], item[’grade’]))

52 print("Enter the Index number of the chapter you want to view

keyword comparisons for today: ")

53

54 chap_choice = pyip.inputNum()

55 passage = client[db_name][passage_collection].find({’_id’:

chap_choice})

56 sence_words = client[db_name][keywords_collection].find({’

passage_num’:int(chap_choice)},{’_id’: 1, ’keyword’:1})

57 sence_words_list = list(sence_words)

58 chapter = passage[0][’text’]

59 sNLP = Stanza()

60 lemma_chapter = sNLP.lemmatize_sentence(chapter)

61 kw_pos_dict = get_hotwords(lemma_chapter)

62 # get high frequency words from rake

63 rake_nltk_var.extract_keywords_from_text(lemma_chapter)

64 rake_words = rake_nltk_var.get_ranked_phrases()[:10]

65 # get high freq words using yake

66 yake_extracts = kw_extractor_yake.extract_keywords(lemma_chapter)

67 yake_keywords = [x for x, y in yake_extracts]

68 bert_extracts = kw_extractor_bert.extract_keywords(lemma_chapter,

keyphrase_ngram_range=(1, 1),

69 stop_words=’

english’, top_n=10)

70 bert_keywords = [x for x, y in bert_extracts]

71

72 # textacy keyeterms

151

73 kt_extracts = kt.textrank(textacy.make_spacy_doc(chapter, lang="

en_core_web_sm"), normalize=’lemma’, window_size=2, position_bias=

True, topn=10)

74 kt_words = [x for x, y in kt_extracts]

75

76 # textacy sgrank

77 sgrank_extracts = kt.sgrank(textacy.make_spacy_doc(chapter, lang="

en_core_web_sm"), normalize=’lemma’, ngrams=1, window_size=2, topn

=10)

78 sgrank_words = [x for x, y in sgrank_extracts]

79

80 # textRank

81 tr4w.analyze(lemma_chapter, candidate_pos=[’NOUN’, ’PROPN’, ’VERB’

, ’ADV’, ’ADJ’], window_size=4, lower=False)

82 textRank_words = tr4w.get_keywords(number=8)

83

84

85 counters = {’NOUN’: 0, ’PROPN’: 0, ’VERB’: 0, ’ADV’: 0, ’ADJ’: 0}

86 for word in yake_keywords:

87 try:

88 counters[kw_pos_dict[word.lower()]] += 1

89 except KeyError:

90 print("Cannot find POS for ", word)

91

92 yake_keywords = sorted(yake_keywords, key=str.lower)

93 print("Yake: ", *yake_keywords, sep=", ")

94 print("Yake counters: ", counters.values())

95

152

96 rake_keywords = sorted(rake_words, key=str.lower)

97 print("Rake: ", *rake_keywords, sep=", ")

98

99 counters = {’NOUN’: 0, ’PROPN’: 0, ’VERB’: 0, ’ADV’: 0, ’ADJ’: 0}

100 for word in bert_keywords:

101 try:

102 counters[kw_pos_dict[word.lower()]] += 1

103 except KeyError:

104 print("Cannot find POS for ", word)

105

106 bert_keywords = sorted(bert_keywords, key=str.lower)

107 print("Bert: ", *bert_keywords, sep=", ")

108 print("Bert counters: ", counters.values())

109

110

111 counters = {’NOUN’: 0, ’PROPN’: 0, ’VERB’: 0, ’ADV’: 0, ’ADJ’: 0}

112 for word in sgrank_words:

113 try:

114 counters[kw_pos_dict[word.lower()]] += 1

115 except KeyError:

116 print("Cannot find POS for ", word)

117

118 sgrank_words = sorted(sgrank_words, key=str.lower)

119 print("SgRank: ", *sgrank_words, sep=", ")

120 print("Sgrank counters: ", counters.values())

121

122 counters = {’NOUN’: 0, ’PROPN’: 0, ’VERB’: 0, ’ADV’: 0, ’ADJ’: 0}

123 for word in textRank_words:

153

124 try:

125 counters[kw_pos_dict[word.lower()]] += 1

126 except KeyError:

127 print("Cannot find POS for ", word)

128

129 textRank_words = sorted(textRank_words, key=str.lower)

130 print("TextRank: ", *textRank_words, sep=", ")

131 print("TextRank counters: ", counters.values())

132

133 counters = {’NOUN’: 0, ’PROPN’: 0, ’VERB’: 0, ’ADV’: 0, ’ADJ’: 0}

134 sence_kw = []

135 for word in sence_words_list:

136 try:

137 pos = kw_pos_dict[word[’keyword’].lower()]

138 counters[pos] += 1

139

140 except KeyError:

141 print("Cannot find POS for ", word)

142 sence_kw.append(word[’keyword’])

143

144 sence_kw = sorted(sence_kw, key=str.lower)

145 print("SENCE: ", *sence_kw, sep=", ")

146 print("SENCE counters: ", counters.values())

147

148 if __name__ == "__main__":

149 main()

154

PickSentencesOtherPassages.py

1 # This script is a helper script to storeSentencesForLessonsBySort.

Given a list of keywords, it picks sentences from

2 # passages other than the one being taught. The purpose of this is to

test the student’s knowledge fof the word in a

3 # context they might not have seen before.

4

5 from SentenceSorterByFilter import *

6 from toolbelt import SentenceSimilarityMeasures

7

8

9 class PickSentencesOtherPassages:

10 db_name = "sence" # name of database

11 sentence_collection = "sentences" # name of passage collection

12 passage_collection = "passage"

13 keywords_collection = "keywords" # name of keywords collection

14 modified_sentences_collection = "modified_sentences"

15 tier_words_collection = "tier_words"

16 sentences_for_passage_collection = "sentences_for_passage"

17 sentences_hash = {}

18 sentences_reverse_hash = {}

19

20 def __init__(self):

21 self.client = pymongo.MongoClient("mongodb://localhost:27017/"

)

22 self.username = "system"

23

24 # given a sentence return the id from the sentence hash

155

25 @staticmethod

26 def pick_sent_given_id(sentence):

27 sentence = sentence.strip()

28 return PickSentencesOtherPassages.sentences_reverse_hash[

sentence]

29

30

31 def pick_other_sentences(self, keyword_ids, passage_id, sort_type)

:

32 keywords = self.client[self.db_name][self.keywords_collection

].find(

33 {’_id’: {’$in’: keyword_ids}}, {’keyword’: 1})

34 kws = list(keywords)

35 keyword_str = ’’

36 for item in kws:

37 keyword_str += " " + item[’keyword’]

38 sentence_sort_by_filter = SentenceSorterByFilter()

39 toolbelt = SentenceSimilarityMeasures()

40 # select sentences from database that have matching keywords

from passages that are not the current lesson

41 all_sentences = self.client[self.db_name][self.

sentence_collection].find(

42 {’keywords_sys_ids’: {’$in’: keyword_ids},

43 ’passage_id’: {’$ne’: int(passage_id)}})

44 all_sentences_list = list(all_sentences)

45 for sent in all_sentences_list:

46 self.sentences_hash.update({sent[’_id’]: sent[’sentence’].

strip()})

156

47 self.sentences_reverse_hash.update({sent[’sentence’].strip

(): sent[’_id’]})

48 if sort_type == ’Sentence Length’:

49 # display sentences by length

50 sents = sentence_sort_by_filter.

pick_candidate_sentences_length(all_sentences_list)

51

52 elif sort_type == ’Keyword in Subject of sentence’:

53 sents = sentence_sort_by_filter.

pick_candidate_sentences_subject(keyword_ids, all_sentences_list)

54 elif sort_type == ’Number of Tier 2 and 3 words in sentence’:

55 sents = sentence_sort_by_filter.

pick_candidate_sentences_tier_words(all_sentences_list,

56 self.db_name, self.tier_words_collection, self.

sentences_hash)

57 else:

58 sents = sentence_sort_by_filter.

pick_candidate_sentences_num_keywords(keyword_ids, self.

sentences_hash, all_sentences_list)

59

60 simp_med_complex_sents = {}

61 if len(sents[’simple’]) > 1:

62 sent = toolbelt.calculate_spacy_sim(keyword_str, list(item

[’sentence’] for item in sents[’simple’]), 1)[0]

63 simp_med_complex_sents[’simple’] = [{’_id’: self.

pick_sent_given_id(sent), ’sentence’: sent}]

64 elif len(sents[’simple’]) == 1:

65 sent = sents[’simple’][0][’sentence’]

157

66 simp_med_complex_sents[’simple’] = [{’_id’: self.

pick_sent_given_id(sent), ’sentence’: sent}]

67 else:

68 simp_med_complex_sents[’simple’] = []

69 if len(sents[’medium’]) > 1:

70 sent = toolbelt.calculate_spacy_sim(keyword_str, list(item

[’sentence’] for item in sents[’medium’]), 1)[0]

71 simp_med_complex_sents[’medium’] = [{’_id’: self.

pick_sent_given_id(sent), ’sentence’: sent}]

72 elif len(sents[’medium’]) == 1:

73 sent = sents[’medium’][0][’sentence’]

74 simp_med_complex_sents[’medium’] = [{’_id’: self.

pick_sent_given_id(sent), ’sentence’: sent}]

75 else:

76 simp_med_complex_sents[’medium’] = []

77

78 if len(sents[’complex’]) > 1:

79 sent = toolbelt.calculate_spacy_sim(keyword_str, list(item

[’sentence’] for item in sents[’complex’]), 1)[0]

80 simp_med_complex_sents[’complex’] = [{’_id’: self.

pick_sent_given_id(sent), ’sentence’: sent}]

81 elif len(sents[’complex’]) == 1:

82 sent = sents[’complex’][0][’sentence’]

83 simp_med_complex_sents[’complex’] = [{’_id’: self.

pick_sent_given_id(sent), ’sentence’: sent}]

84 else:

85 simp_med_complex_sents[’complex’] = []

86 return simp_med_complex_sents

158

SentenceSorterByFilter.py

1 # This is a helper method to storeSentencesForLessonsBySort and

PickSentencesOtherPassages

2

3 import configparser

4 import math

5 import pyinputplus as pyip

6 import pymongo

7 import random

8 import re

9 import spacy

10

11

12 # this method returns verbs and adverbs spans from the sentence.

13 # It accepts a tokenized sentence and returns a list of spans

14 def return_verb_chunks(sentence_tokenized):

15 verb_chunks = []

16 for token in sentence_tokenized:

17 if token.pos_ == "VERB" or token.pos_ == "ADV":

18 span = sentence_tokenized[token.i:token.i + 1]

19 verb_chunks.append(span)

20 return verb_chunks

21

22 class SentenceSorterByFilter:

23 def __init__(self):

24 self.client = pymongo.MongoClient("mongodb://localhost:27017/"

)

25 config = configparser.ConfigParser()

159

26 try:

27 config.read(’../config.ini’)

28 except KeyError:

29 config.read(’config.ini’)

30 self.num_sentences_to_return_passage = config[’SENTENCES’][’

num_sentences_to_return_passage’]

31 self.simple_sent_dependency_tags = config[’SENTENCES’][’

sentence_location_filter_simple’].split()

32 self.medium_sent_dependency_tags = config[’SENTENCES’][’

sentence_location_filter_medium’].split()

33

34 # this method picks ’x’ number of sentences from shortest to

longest

35 # divide number of sentences into three buckets - simple, medium,

complex and upper bound of length for each

36 # divide sentences into each bucket and return

37 def pick_candidate_sentences_length(self, inp_list):

38 # find the max length in sentences

39 max_length = 0

40 for item in inp_list:

41 if item[’sentence_length’] > max_length:

42 max_length = item[’sentence_length’]

43 # find the three buckets

44 simple = math.ceil(max_length / 3) + 2

45 medium = (simple - 2) * 2

46 simp_sentences = []

47 med_sentences = []

48 complex_sentences = []

160

49 insufficient_flag = True

50 insufficient_tries = 0

51 while insufficient_flag:

52 for sent in inp_list:

53 sentence = sent[’sentence’].strip()

54 if sent[’sentence_length’] <= simple:

55 simp_sentences.append({’_id’: sent[’_id’], ’

sentence’: sentence})

56 elif simple < sent[’sentence_length’] <= medium:

57 med_sentences.append({’_id’: sent[’_id’], ’

sentence’: sentence})

58 else:

59 complex_sentences.append({’_id’: sent[’_id’], ’

sentence’: sentence})

60 if ((len(simp_sentences) <= int(self.

num_sentences_to_return_passage) or len(

61 med_sentences) <= int(self.

num_sentences_to_return_passage)) and insufficient_tries < int(

62 self.num_sentences_to_return_passage)):

63 simple += 1 # increase the simple and medium

thresholds to get more sentences in each of those buckets

64 medium += 1

65 insufficient_tries += 1 # to avoid an endless loop in

case there are no sentences to be found

66 # reset the lists

67 simp_sentences = []

68 med_sentences = []

69 complex_sentences = []

161

70 else:

71 insufficient_flag = False

72

73 sentences = {’simple’: simp_sentences, ’medium’: med_sentences

, ’complex’: complex_sentences}

74 return sentences

75

76 # this method picks sentences where the keyword is in the subject

of the sentence and bins resulting sentences into

77 # simple, med and complex based on where the word appears in the

subject

78 def pick_candidate_sentences_subject(self, kw_list, inp_list):

79 nlp = spacy.load(’en_core_web_lg’)

80

81 simp_sentences = []

82 med_sentences = []

83 complex_sentences = []

84 size_simp = 0

85 size_med = 0

86 size_comp = 0

87 for item in inp_list:

88 sent = item[’sentence’]

89 doc = nlp(sent)

90 noun_chunks = list(doc.noun_chunks)

91 non_noun_chunks = return_verb_chunks(doc)

92 chunks = non_noun_chunks + noun_chunks

93 sent_appended = False # reset the flag

94 # separate the sentence into noun chunks

162

95 for chunk in chunks:

96 if sent_appended: # if sentence has already been

added to list of sentences, skip to next sentence

97 break

98

99 if chunk.lemma_ in kw_list or (chunk.root.dep_ != ’

ROOT’ and chunk.root.lemma_ in kw_list) :

100 if (

101 chunk.root.dep_ in self.

simple_sent_dependency_tags) and size_simp <= size_med and

size_simp <= size_comp:

102 simp_sentences.append({’_id’: item[’_id’], ’

sentence’: sent})

103 sent_appended = True

104 size_simp += size_simp

105 elif (

106 chunk.root.dep_ in self.

medium_sent_dependency_tags) and size_med <= size_simp and

size_med <= size_comp:

107 med_sentences.append({’_id’: item[’_id’], ’

sentence’: sent})

108 sent_appended = True

109 size_med += size_med

110 elif size_comp <= size_simp and size_comp <=

size_med:

111 complex_sentences.append({’_id’: item[’_id’],

’sentence’: sent})

112 sent_appended = True

163

113 size_comp += size_comp

114 break

115

116 sentences = {’simple’: simp_sentences, ’medium’: med_sentences

, ’complex’: complex_sentences}

117 return sentences

118

119 # this method picks sentence based on number of identified

keywords in the sentence

120 def pick_candidate_sentences_num_keywords(self, kw_ids,

sentences_hash, all_sentences_list):

121 sentences_by_num_kw = {}

122

123 for sent in all_sentences_list:

124 # find intersection of kw_picked_ids and keyword_sys_ids

of sentence

125 kw_in_sent = set(sent[’keywords_sys_ids’]) & set(kw_ids)

126 # if key (number of keywords in sentence) is not in dict,

add it

127 if len(kw_in_sent) not in sentences_by_num_kw.keys():

128 sentences_by_num_kw[len(kw_in_sent)] = [{’kw_id’:

kw_in_sent, ’sent_id’: [sent[’_id’]]}]

129 else:

130 # find the (keywords list) to append the sentence id

to it

131 kw_found = False

132 for item in sentences_by_num_kw[len(kw_in_sent)]:

133 if item[’kw_id’] == kw_in_sent:

164

134 kw_index = sentences_by_num_kw[len(kw_in_sent)

].index(item)

135 sentences_by_num_kw[len(kw_in_sent)][kw_index

][’sent_id’].append(sent[’_id’])

136 kw_found = True

137 break

138 # if keywords list is not in dict, add it to the dict

139 if kw_found is False:

140 sentences_by_num_kw[len(kw_in_sent)].append({’

kw_id’: kw_in_sent, ’sent_id’: [sent[’_id’]]})

141

142 # define size of simple, medium, complex buckets

143 num_kw = len(kw_ids)

144 bucket_size = math.floor(num_kw / 3)

145 simp_size = bucket_size

146 med_size = bucket_size + 1

147 # define the upper bound of the medium index; this is

sufficient to define bounds for simple and complex sentences

148 med_index = simp_size + med_size

149

150 simp_sentences = []

151 med_sentences = []

152 complex_sentences = []

153 insufficient_flag = True

154 insufficient_tries = 0

155 while insufficient_flag:

156 # Separate sentences into simple, complex and medium bins

depending on number of keywords in the sentence

165

157 for kw, kw_tuple in sentences_by_num_kw.items():

158 if kw <= simp_size:

159 for item in kw_tuple:

160 sentences = item[’sent_id’]

161 for sent in sentences:

162 simp_sentences.append({’_id’: sent, ’

sentence’: sentences_hash[sent]})

163 elif simp_size < kw < med_index:

164 for item in kw_tuple:

165 sentences = item[’sent_id’]

166 for sent in sentences:

167 med_sentences.append({’_id’: sent, ’

sentence’: sentences_hash[sent]})

168 else:

169 for item in kw_tuple:

170 sentences = item[’sent_id’]

171 for sent in sentences:

172 complex_sentences.append({’_id’: sent, ’

sentence’: sentences_hash[sent]})

173 if ((len(simp_sentences) <= int(self.

num_sentences_to_return_passage) or len(

174 med_sentences) <= int(self.

num_sentences_to_return_passage)) and

175 insufficient_tries < int(self.

num_sentences_to_return_passage)):

176 simp_size += 1 # increase the simple and medium

thresholds to get more sentences in each of those buckets

177 med_size += 1

166

178 insufficient_tries += 1 # to avoid an endless loop in

case there are no sentences to be found

179 # reset the lists

180 simp_sentences = []

181 med_sentences = []

182 complex_sentences = []

183 else:

184 insufficient_flag = False

185 all_sentences = {’simple’: simp_sentences, ’medium’:

med_sentences, ’complex’: complex_sentences}

186 return all_sentences

187

188 # this method generates tuples of sentences with (1...n) keywords

of sentences chosen at random

189 @staticmethod

190 def pick_candidate_sentences_random(kw_ids, inp_list, num_tuple):

191 list_sents = []

192 if num_tuple == 1:

193 for item in inp_list:

194 rand_sent = random.choice(item[’sent_id’])

195 list_sents.append({’kw_id’: item[’kw_id’], ’sent_id’:

rand_sent})

196 else:

197 # get all available tuples of keywords

198 all_kw_combos = [tuple(item[’kw_id’]) for item in inp_list

]

199 picked_kws = []

200 for kw_id in kw_ids:

167

201 # for each kw_id pick a tuple that has that id in it

202 kw_picked_tuple = list(filter(lambda x: kw_id in x,

all_kw_combos))

203 # now pick one of those by random and add to list

204 picked_kws.append(random.choice(kw_picked_tuple))

205 unique_tuples = list(set(picked_kws))

206 # now that we have a list of random keyword tuples, we

need to pick sentences based on those keywords

207 for item in unique_tuples:

208 for pair in inp_list:

209 if sorted(list(pair[’kw_id’])) == sorted(list(item

)):

210 rand_sent = random.choice(pair[’sent_id’])

211 list_sents.append({’kw_id’: pair[’kw_id’], ’

sent_id’: rand_sent})

212 break

213

214 return list_sents

215

216 # this method returns sentences based on number of tier 2 and 3

words present in the sentences

217 def pick_candidate_sentences_tier_words(self, inp_list, db_name,

tier_words_collection, sentences_hash):

218 tier_two_words_set = set()

219 tier_three_words_set = set()

220 tier_words_other_set = set()

221 tier_word_sent_dict = {}

222 most_t_ids = 0

168

223 simp_sentences = []

224 med_sentences = []

225 complex_sentences = []

226 # remove stop words from sentence

227 nlp = spacy.load(’en_core_web_sm’)

228 for sent_item in inp_list:

229 sentence = sent_item[’sentence’]

230 nlp_sentence = nlp(sentence)

231 # remove all the stop words from the sentence (to reduce

number of lookups) and lemmatize the word

232 filtered_tokens = [token.lemma_ for token in nlp_sentence

if not token.is_stop]

233 filtered_tokens = [token.lower() for token in

filtered_tokens]

234 # identify tier 2 and 3 words from condensed sentence in

the database

235 tier_words = self.client[db_name][tier_words_collection].

find(

236 {’word’: {’$in’: filtered_tokens}})

237

238 tier_words = list(tier_words)

239 if tier_words and len(tier_words) > 0:

240 for w in tier_words:

241 if w[’inserted_by’] == ’system’:

242 if w[’tier’] == 2:

243 tier_two_words_set.add(w[’word’])

244 elif w[’tier’] == 3:

245 tier_three_words_set.add(w[’word’])

169

246 else:

247 tier_words_other_set.add(w[’word’])

248 t_ids = [x[’_id’] for x in tier_words]

249 # tier_words_set.update(t_words)

250 tier_word_sent_dict[sent_item[’_id’]] = t_ids

251

252 if tier_two_words_set:

253 t_words = " ".join(tier_two_words_set)

254 print("Tier 2 words in this passage are: ", t_words)

255 if tier_three_words_set:

256 t_words = " ".join(tier_three_words_set)

257 print("Tier 3 words in this passage are: ", t_words)

258 if tier_words_other_set:

259 t_words = " ".join(tier_words_other_set)

260 print("Others have added the following tier words: ",

t_words)

261 addwords = pyip.inputYesNo("Would you like to add any more

tier words based on this passage? ")

262 if addwords == ’yes’:

263 username = pyip.inputStr("Please enter your username: ")

264 tier2addedwords = pyip.inputStr("Please add additional

Tier 2 words separated by a space. ")

265 t2addedwords = tier2addedwords.split(" ") if (len(

tier2addedwords) > 0) else None

266 tier3addedwords = pyip.inputStr("Please add additional

Tier 3 words separated by a space. ", blank=True)

267 t3addedwords = tier3addedwords.split(" ") if (len(

tier3addedwords) > 0) else None

170

268 if (t2addedwords and len(t2addedwords) > 0) or (

t3addedwords and len(t3addedwords) > 0):

269 all_added_words = []

270 tw_add_hash = {}

271 num_docs_cursor = self.client[db_name][

tier_words_collection].find(

272 {}, {"_id": 1}).sort("_id", pymongo.DESCENDING).

limit(1)

273 num_docs = num_docs_cursor.next()

274 index_st = num_docs[’_id’] + 1

275 if t2addedwords and len(t2addedwords) > 0:

276 for tw in t2addedwords:

277 doc = nlp(tw)

278 insert_w = doc[0].lemma_

279 insert_dict = {"_id": index_st,

280 "word": insert_w.lower(),

281 "tier": 2,

282 "grade": "NA",

283 "inserted_by": username

284 }

285 try:

286 insert_id = self.client[db_name][

tier_words_collection].insert_one(insert_dict)

287 all_added_words.append(insert_w.lower())

288 tw_add_hash[insert_w.lower()] = insert_id.

inserted_id

289 index_st = index_st + 1

290 except pymongo.errors.DuplicateKeyError:

171

291 print("Word %s is already in the database.

" % tw)

292 if t3addedwords and len(t3addedwords) > 0:

293 for tw in t3addedwords:

294 doc = nlp(tw)

295 insert_w = doc[0].lemma_

296 insert_dict = {"_id": index_st,

297 "word": insert_w.lower(),

298 "tier": 3,

299 "grade": "NA",

300 "inserted_by": username

301 }

302 try:

303 insert_id = self.client[db_name][

tier_words_collection].insert_one(insert_dict)

304 all_added_words.append(insert_w.lower())

305 tw_add_hash[insert_w.lower()] = insert_id.

inserted_id

306 index_st = index_st + 1

307 except pymongo.errors.DuplicateKeyError:

308 print("Word %s is already in the database.

" % tw)

309 # recheck sentences to see if newly added words are

present

310 add_words_str = "|".join(all_added_words)

311 for item in inp_list:

312 sent = item[’sentence’]

313 nlp_sentence = nlp(sent)

172

314 sent = " ".join([token.lemma_ for token in

nlp_sentence])

315 sent = sent.lower()

316 matches = re.findall(add_words_str, sent)

317 if matches and len(matches) > 0:

318 # add sentence to tier_word_sent_dict

319 for match in matches:

320 tw_id = tw_add_hash[match]

321 # if sent_id already exists, append tier

word id to existing dict

322 if item[’_id’] in tier_word_sent_dict.keys

():

323 tier_word_sent_dict[item[’_id’]].

append(tw_id)

324 # else add new dict item

325 else:

326 tier_word_sent_dict[item[’_id’]] = [

tw_id]

327

328 # check the max number of tier words in a sentence to define

bounds for simple, med and complex sentences

329 for s_id, tw_ids in tier_word_sent_dict.items():

330 if len(tw_ids) > most_t_ids:

331 most_t_ids = len(tw_ids)

332 # return sentences grouped as simple, medium and complex based

on number of tier words in sentences

333 # find the three buckets

334 simple = math.floor(most_t_ids / 3)

173

335 medium = simple * 2

336 insufficient_flag = True

337 insufficient_tries = 0

338 while insufficient_flag:

339 for s_id, tw_ids in tier_word_sent_dict.items():

340 tw_num = len(tw_ids)

341 if tw_num <= simple:

342 simp_sentences.append({’_id’: s_id, ’sentence’:

sentences_hash[s_id]})

343 elif simple < tw_num <= medium:

344 med_sentences.append({’_id’: s_id, ’sentence’:

sentences_hash[s_id]})

345 else:

346 complex_sentences.append({’_id’: s_id, ’sentence’:

sentences_hash[s_id]})

347 if ((len(simp_sentences) <= int(self.

num_sentences_to_return_passage) or len(

348 med_sentences) <= int(self.

num_sentences_to_return_passage)) and

349 insufficient_tries < int(self.

num_sentences_to_return_passage)):

350 simple += 1 # increase the simple and medium

thresholds to get more sentences in each of those buckets

351 medium += 1

352 insufficient_tries += 1 # to avoid an endless loop in

case there are no sentences to be found

353 # reset the lists

354 simp_sentences = []

174

355 med_sentences = []

356 complex_sentences = []

357 else:

358 insufficient_flag = False

359

360 # show users tier words and see if they want to add more

361 # if yes, add to db

362 all_sentences = {’simple’: simp_sentences, ’medium’:

med_sentences, ’complex’: complex_sentences}

363 return all_sentences

showStudentResults.py

1 import pyinputplus as pyip

2 import pymongo

3 import tabulate

4

5

6 class ShowStudentResults:

7 db_name = "sence" # name of database

8 student_response_collection = "student_response"

9

10 def __init__(self):

11 self.client = pymongo.MongoClient("mongodb://localhost:27017/"

)

12

13 def show_results(self):

175

14 # find unique values of passage num, sort type and keywords

from sentences_for_passage collection.

15 # we need unique values because there are multiple rows for

simple, complex, medium sentences for each (passage_num, sort_type

, keywords) set

16 db_res = self.client[ShowStudentResults.db_name][

ShowStudentResults.student_response_collection].aggregate([

17 {"$group": {"_id": {"passage": "$passage", "student_name":

"$student_name", "keywords": "$keywords",

18 "time_assessed": "$time_assessed", "

sort_type": "$sort_type"}}}

19])

20 db_res_list = list(db_res)

21 table = []

22 counter = 1

23 table_headers = [’Index \n Number’, ’Passage title’, ’Keywords

’, ’Filter type’, ’Student name’,

24 ’Time of assessment’]

25 for item in db_res_list:

26 result_details = item[’_id’]

27 table.append([counter, result_details[’passage’], ", ".

join(result_details[’keywords’]),

28 result_details[’sort_type’], result_details[

’student_name’], result_details[’time_assessed’]])

29 counter += 1

30 print(tabulate.tabulate(table, table_headers))

31 input_choice = pyip.inputNum("Please enter the index number of

the results you will like to see: ")

176

32 db_filter = db_res_list[input_choice - 1][’_id’]

33 student_res_db = self.client[ShowStudentResults.db_name][

ShowStudentResults.student_response_collection].find(

34 {’passage’: db_filter[’passage’], ’keywords’: {’$in’:

db_filter[’keywords’]},

35 ’sort_type’: db_filter[’sort_type’],

36 ’student_name’: db_filter[’student_name’], ’time_assessed

’: db_filter[’time_assessed’]})

37 student_results_list = list(student_res_db)

38 print("Filter criteria used:")

39 print("Passage: ", db_filter[’passage’])

40 print("Keywords: ", ", ".join(db_filter[’keywords’]))

41 print("Student name: ", db_filter[’student_name’])

42 print("Time of assessment: ", db_filter[’time_assessed’])

43 num_correct = 0

44 for item in student_results_list:

45 print("\nOriginal sentence: ", item[’sentence_original’])

46 print("Student response: ", item[’sentence_response’])

47 if item[’correct’]:

48 correct = "CORRECT."

49 num_correct += 1

50 else:

51 correct = "WRONG."

52 print("Student response is ", correct)

53 print("\n Student answered %d of %d sentences correctly." % (

num_correct, len(student_results_list)))

54 print("The percentage of sentences answered correctly is: %.2f

%%" % (num_correct / len(student_results_list)*100))

177

55

56

57 if __name__ == "__main__":

58 student_results = ShowStudentResults()

59 student_results.show_results()

storeSentencesForLessonBySort.py

1 # this script does the following

2 # based on keywords, picks simple, medium and complex sentences based

on the following criteria

3 # a. length of sentences

4 # b. number of keywords in sentence

5 # c. parts of speech in the sentence

6 import numpy as np

7 from PickSentencesOtherPassages import *

8

9

10 class PickSentences:

11 db_name = "sence" # name of database

12 sentence_collection = "sentences" # name of passage collection

13 passage_collection = "passage"

14 keywords_collection = "keywords" # name of keywords collection

15 modified_sentences_collection = "modified_sentences"

16 tier_words_collection = "tier_words"

17 sentences_for_passage_collection = "sentences_for_passage"

18 sentences_hash = {}

19 keywords_hash = {}

178

20

21 def __init__(self):

22 self.client = pymongo.MongoClient("mongodb://localhost:27017/"

)

23 self.username = "system"

24 self.chap_choice = ’’

25 self.kw_picked_ids = []

26 self.kw_list = []

27 self.filter_choice = 0

28

29 # this method returns a keywords ids given a sentence and a subset

of keyword and corresponding sentences

30 @staticmethod

31 def get_keywords_given_sentence(sentence, kw_sentence_corpus):

32 kw_id = 0

33 sent_id = 0

34 # get the sentence id from sentence hash

35 for i in PickSentences.sentences_hash:

36 if PickSentences.sentences_hash[i] == sentence:

37 sent_id = i

38 break

39 # get the keyword id from the corpus

40 for item in kw_sentence_corpus:

41 if sent_id in item[’sent_id’]:

42 kw_id = item[’kw_id’]

43 break

44 return kw_id, sent_id

45

179

46 # get sentence from hash

47 @staticmethod

48 def get_sentence_from_hash(sent_id):

49 try:

50 sentence = PickSentences.sentences_hash[int(sent_id)]

51 except ValueError:

52 sentence = PickSentences.sentences_hash[str(sent_id).strip

()]

53 except KeyError:

54 sentence = PickSentences.sentences_hash[str(sent_id).strip

()]

55 return sentence

56

57 # this method generates tuples of sentences with (1...n) keywords

of sentences chosen at random

58 @staticmethod

59 def pick_candidate_sentences_random(kw_ids, inp_list, num_tuple):

60 list_sents = []

61 if num_tuple == 1:

62 for item in inp_list:

63 rand_sent = random.choice(item[’sent_id’])

64 list_sents.append({’kw_id’: item[’kw_id’], ’sent_id’:

rand_sent})

65 else:

66 # get all available tuples of keywords

67 all_kw_combos = [tuple(item[’kw_id’]) for item in inp_list

]

68 picked_kws = []

180

69 for kw_id in kw_ids:

70 # for each kw_id pick a tuple that has that id in it

71 kw_picked_tuple = list(filter(lambda x: kw_id in x,

all_kw_combos))

72 # now pick one of those by random and add to list

73 picked_kws.append(random.choice(kw_picked_tuple))

74 unique_tuples = list(set(picked_kws))

75 # now that we have a list of random keyword tuples, we

need to pick sentences based on those keywords

76 for item in unique_tuples:

77 for pair in inp_list:

78 if sorted(list(pair[’kw_id’])) == sorted(list(item

)):

79 rand_sent = random.choice(pair[’sent_id’])

80 list_sents.append({’kw_id’: pair[’kw_id’], ’

sent_id’: rand_sent})

81 break

82

83 return list_sents

84

85 # pick sentences based on tf-idf and cosine similarity for each

set of num keywords

86 # for each number of keywords set, rank the candidate sentences by

highest cosine sim score

87 # pick the one with the highest that has not already been picked.

88 # pick the next one making sure that a. new keywords in the pick

and b. sentence has not already been picked

89 # do this until max number of sentences has been reached

181

90 # inputs are number of keywords in each sentence, list of combos

of kw and sentences, and number of sentences to return

91 @staticmethod

92 def pick_sent_cosine_bert_sim(cos_bert, sentences, num_pick=3):

93 all_sents = []

94 uniq_kw_id = set()

95 chosen_sents = []

96 i = 1

97 tb = SentenceSimilarityMeasures()

98 for item in sentences:

99 uniq_kw_id.update(item[’kw_id’])

100 for it in item[’sent_id’]:

101 all_sents.append(PickSentences.sentences_hash[it])

102

103 if cos_bert == ’cos’:

104 sim_matrix = tb.tfidf_cos_sim(all_sents)

105 else:

106 sim_matrix = tb.sentence_sim_bert(all_sents)

107 sorted_index = np.argsort(sim_matrix)

108 len_sorted_index = len(sorted_index)

109 print("All sentences")

110 print(all_sents)

111

112 while (i <= num_pick) and ((len_sorted_index - i) >= 0):

113 # pick the sentence that has the highest cosine sim value

114 try:

115 current_index = sorted_index[len_sorted_index - i]

116 chosen_sent = all_sents[current_index]

182

117 print("Chosen sentence: %s" % chosen_sent)

118 # get the kw_id[s] tuple and sentence_id of the

sentence

119

120 kw_id, sent_id = PickSentences.

get_keywords_given_sentence(chosen_sent, sentences)

121 # add it to the chosen sents

122 chosen_sents.append({’kw_id’: kw_id, ’sent_id’:

sent_id})

123 i = i + 1

124 except IndexError:

125 break

126

127 return chosen_sents

128

129 def pick_default_sentences(self):

130 sents = []

131 sentence_sort_by_filter = SentenceSorterByFilter()

132 # select sentences from database that have matching keywords

133 all_sentences = self.client[PickSentences.db_name][

PickSentences.sentence_collection].find(

134 {’keywords_sys_ids’: {’$in’: self.kw_picked_ids},

135 ’passage_id’: int(self.chap_choice)})

136 all_sentences_list = list(all_sentences)

137 if len(PickSentences.sentences_hash) == 0:

138 for sent in all_sentences_list:

139 PickSentences.sentences_hash.update({sent[’_id’]: sent

[’sentence’]})

183

140 mod_sents = pick_sentences.get_modified_sents_from_db()

141 # if there is version of modified sentence available, replace

original sentence with modified sentence

142 mod_sents_og_ids = [mod_sent[2] for mod_sent in mod_sents] #

get all ids of original sentences

143 # iterate through both lists to find matches and then

substitute with modified sentence if available

144 for ind, item in enumerate(all_sentences_list):

145 for ind_mod, item_mod in enumerate(mod_sents_og_ids):

146 if item[’_id’] == item_mod:

147 # replace original sentence id and sentence with

mod sent id and sentence

148 all_sentences_list[ind][’_id’] = ’M’ + str(

mod_sents[ind_mod][0])

149 all_sentences_list[ind][’sentence’] = str(

mod_sents[ind_mod][3])

150 if self.filter_choice == ’Sentence Length’:

151 # display sentences by length

152 sents = sentence_sort_by_filter.

pick_candidate_sentences_length(all_sentences_list)

153

154 elif self.filter_choice == ’Keyword in structure of sentence’:

155 sents = sentence_sort_by_filter.

pick_candidate_sentences_subject(self.kw_list, all_sentences_list)

156 # sents = self.pick_candidate_sentences_subject(kw_picked,

all_sentences_list)

157 elif self.filter_choice == ’Number of Tier 2 and 3 words in

sentence’:

184

158 sents = sentence_sort_by_filter.

pick_candidate_sentences_tier_words(all_sentences_list,

159

PickSentences.db_name,

160

PickSentences.tier_words_collection,

161

PickSentences.sentences_hash)

162

163 else:

164 if self.filter_choice == ’Number of keywords’:

165 sents = sentence_sort_by_filter.

pick_candidate_sentences_num_keywords(self.kw_picked_ids,

166

PickSentences.sentences_hash,

167

all_sentences_list)

168 else:

169 sentences_by_num_kw = {}

170

171 for sent in all_sentences_list:

172 # find intersection of kw_picked_ids and

keyword_sys_ids of sentence

173 kw_in_sent = set(sent[’keywords_sys_ids’]) & set(

self.kw_picked_ids)

174 # if key (number of keywords in sentence) is not

in dict, add it

185

175 if len(kw_in_sent) not in sentences_by_num_kw.keys

():

176 sentences_by_num_kw[len(kw_in_sent)] = [{’

kw_id’: kw_in_sent, ’sent_id’: [sent[’_id’]]}]

177 else:

178 # find the (keywords list) to append the

sentence id to it

179 kw_found = False

180 for item in sentences_by_num_kw[len(kw_in_sent

)]:

181 if item[’kw_id’] == kw_in_sent:

182 kw_index = sentences_by_num_kw[len(

kw_in_sent)].index(item)

183 sentences_by_num_kw[len(kw_in_sent)][

kw_index][’sent_id’].append(sent[’_id’])

184 kw_found = True

185 break

186 # if keywords list is not in dict, add it to

the dict

187 if kw_found is False:

188 sentences_by_num_kw[len(kw_in_sent)].

append({’kw_id’: kw_in_sent, ’sent_id’: [sent[’_id’]]})

189

190 if self.filter_choice == ’TD-IDF cosine sim’:

191 # pick sentences based on highest cosine

similarity

192 for item, value in sentences_by_num_kw.items():

186

193 sents = self.pick_sent_cosine_bert_sim("cos",

value, 5)

194

195 elif self.filter_choice == ’BERT’:

196 # pick sentences based on highest bert similarity

197 for item, value in sentences_by_num_kw.items():

198 sents = self.pick_sent_cosine_bert_sim("bert",

value, 5)

199

200 elif self.filter_choice == ’Random’:

201 # pick sentences for each kw tuple

202 for count, i in enumerate(self.kw_picked_ids, 1):

203 try:

204 picked_sentences = self.

pick_candidate_sentences_random(self.kw_picked_ids,

205

sentences_by_num_kw[count],

206

count)

207 for item in picked_sentences:

208 print(

209 "keyword(s): %s sentence: %s" % (

210 item[’kw_id’], PickSentences.

get_sentence_from_hash([’sent_id’])))

211 except KeyError:

212 print("No sentences found with %d keywords

" % count)

213 return sents

187

214

215 def get_chapter_keywords_and_filter(self):

216 kw_str = ""

217 toolbelt = SentenceSimilarityMeasures()

218 # find title and id of all chapters in db

219 db_res = self.client[PickSentences.db_name][PickSentences.

passage_collection].find({}, {"title": 1})

220 print("Index number \t Title")

221 for item in db_res:

222 print("%d \t %s" % (item[’_id’], item[’title’]))

223

224 # get default and user supplied keywords for selected chapter

225 self.chap_choice = pyip.inputNum("Enter the Index number of

the chapter you want to pick sentences for today: ")

226 passage_kw = self.client[PickSentences.db_name][PickSentences.

keywords_collection].find(

227 {’passage_num’: {’$in’: [int(self.chap_choice)]}, ’

inserted_by’: ’system’},

228 {’keyword’: 1, ’_id’: 1})

229 passage_kw = list(passage_kw)

230

231 for item in passage_kw:

232 kw_str = kw_str + " " + str(item[’keyword’])

233 PickSentences.keywords_hash.update({item[’_id’]: item[’

keyword’]})

234 # kw_str = ’ ’.join(item[’keyword’] for item in passage_kw)

235 print("\nSystem Keywords for this passage are: ", kw_str)

188

236 passage_others_kw = self.client[PickSentences.db_name][

PickSentences.keywords_collection].find(

237 {’passage_num’: {’$in’: [int(self.chap_choice)]}, ’

inserted_by’: {’$ne’: ’system’}},

238 {’keyword’: 1, ’_id’: 1})

239 passage_others_kw = list(passage_others_kw)

240 if len(passage_others_kw) > 0:

241 kw_others_str = ""

242 for item in passage_others_kw:

243 kw_others_str = kw_others_str + " " + str(item[’

keyword’])

244 PickSentences.keywords_hash.update({item[’_id’]: item[

’keyword’]})

245 print("Others have added the following keywords: ",

kw_others_str)

246 kw_all = list(kw_str.split(" ")) + list(kw_others_str.

split(" "))

247 # kw_others_str = ’ ’.join(item[’keyword’] for item in

passage_others_kw)

248 # print("%s\n" %)

249 else:

250 kw_all = list(kw_str.split(" "))

251 kw_picked = pyip.inputStr("\n Please enter the keywords you

want to use in today’s class: ")

252 # combine default and user keyword lists

253 kw_picked_str = list(kw_picked.split(" "))

254 for index, item in enumerate(kw_picked_str):

255 if item not in kw_all:

189

256 correct_kw = toolbelt.typos_closest_match(item, kw_all

)

257 kw_picked_str[index] = correct_kw

258 print("\n %s has been corrected to %s" % (item,

correct_kw))

259 # validate the user entered list against combined list to

ensure that only words from the database are chosen

260 self.kw_list = list(set(kw_all) & set(kw_picked_str))

261 # print(kw_picked)

262 # get ids for the lesson keywords

263 # combine both default and user keyword lists and create a

dict of kw_id and keyword

264 kw_all_dict = {}

265 for item in passage_kw:

266 kw_all_dict[item[’keyword’]] = item[’_id’]

267 for item in passage_others_kw:

268 kw_all_dict[item[’keyword’]] = item[’_id’]

269

270 for item in self.kw_list:

271 self.kw_picked_ids.append(kw_all_dict[item])

272 # get the user choice on filter to use for ranking sentences

273 self.filter_choice = pyip.inputMenu(

274 [’Sentence Length’, ’Number of keywords’, ’Keyword in

structure of sentence’,

275 ’Number of Tier 2 and 3 words in sentence’],

276 prompt="Please enter the number of the sort you would like

applied today.\n",

277 numbered=True)

190

278 return 0

279

280 def modify_sentences(self):

281 sent_mod_choice = pyip.inputYesNo("Would you like to modify

any of these sentences?")

282 inserted_sentences = []

283 if sent_mod_choice == ’yes’:

284 # get the id of last sentence in the collection

285 num_docs_cursor = self.client[PickSentences.db_name][

PickSentences.modified_sentences_collection].find({}, {

286 "_id": 1}).sort("_id", pymongo.DESCENDING).limit(1)

287 num_docs = num_docs_cursor.next()

288 index_st = num_docs[’_id’] + 1

289 self.username = pyip.inputStr("Please enter your username:

")

290 sent_choice = pyip.inputStr(

291 "Which sentences would you like to modify? Please

enter the sentence IDs separated by a space.")

292 sent_mod_ids = sent_choice.split(" ")

293 for s_id in sent_mod_ids:

294 try:

295 s_id = int(s_id)

296 mod_exists = self.client[PickSentences.db_name][

297 PickSentences.modified_sentences_collection].

find_one(

298 {"orig_sent_id": s_id, "modified_by": self.

username}, limit=1)

299 if mod_exists:

191

300 rep_mod = pyip.inputYesNo(

301 "Sentence # %d has already been modified

by you. The modified sentence is : %s Would you like to replace

this modified sentence? " % (

302 s_id, mod_exists[’modified_sentence’])

)

303 # check if user wants to replace existing

modified sentence

304 if rep_mod == "yes":

305 sentence = self.get_sentence_from_hash(

s_id)

306 sent_mod = pyip.inputStr("Please enter the

alternate version of sentence: %s" % sentence)

307 sent_length = len(sent_mod.strip().split()

)

308 filter_sent = {"orig_sent_id": int(s_id),

"modified_by": self.username}

309

310 update_dict = {"$set": {"sentence_length":

sent_length,

311 "modified_by": self.username,

312 "modified_sentence": sent_mod

313 }}

314 insertResult = self.client[PickSentences.

db_name][

315 PickSentences.

modified_sentences_collection].find_one_and_update(

316 filter_sent, update_dict)

192

317 inserted_sentences.append((int(s_id), self

.username, insertResult[’_id’], sent_mod))

318 index_st += 1

319 print("Sentence has successfully been

modified.")

320

321 else:

322 sentence = PickSentences.

get_sentence_from_hash(s_id)

323 sent_mod = pyip.inputStr("Please enter the

alternate version of sentence: %s" % sentence)

324 sent_length = len(sent_mod.strip().split())

325

326 if sent_length > 0:

327 insert_dict = {"_id": index_st,

328 "modified_sentence": sent_mod,

329 "orig_sent_id": int(s_id),

330 "sentence_length": sent_length,

331 "modified_by": self.username

332 }

333

334 try:

335 insertResult = self.client[

PickSentences.db_name][

336 PickSentences.

modified_sentences_collection].insert_one(

337 insert_dict)

338 inserted_sentences.append(

193

339 (int(s_id), self.username,

insertResult.inserted_id, sent_mod))

340 index_st += 1

341 print("Sentence has successfully been

modified.")

342 except pymongo.errors.DuplicateKeyError:

343 print("Sentence %s already in database

" % sentence.text)

344

345 except KeyError:

346 print("Sentence with id %d does not exist." % s_id

)

347 return inserted_sentences

348

349 # this method retrieves modified sentences for the system picked

sentences from mongoDB

350 def get_modified_sents_from_db(self):

351 m_sents = []

352 sent_ids = PickSentences.sentences_hash.keys()

353 l_sent_ids = list(sent_ids)

354 modded_sents = self.client[PickSentences.db_name][

PickSentences.modified_sentences_collection].find(

355 {’orig_sent_id’: {’$in’: l_sent_ids}})

356 modded_sents = list(modded_sents)

357 for m_sent in modded_sents:

358 # create a list of ({orig_sent_id:(mod_sent_id,

mod_sentence, modified_by)})

359 m_sents.append(

194

360 (m_sent[’_id’], m_sent[’modified_by’], m_sent[’

orig_sent_id’], m_sent[’modified_sentence’]))

361 m_id = ’M’ + str(m_sent[’_id’])

362 PickSentences.sentences_hash.update({m_id: m_sent[’

modified_sentence’]})

363 return m_sents

364

365 @staticmethod

366 # return the id of the keyword or sentence using the keywords_hash

or sentence_hash structures

367 def return_id_from_hash(str_to_match, kw_sent=’kw’):

368 if kw_sent == ’kw’:

369 for key, item in PickSentences.keywords_hash.items():

370 if item == str_to_match:

371 return key

372 else:

373 for key, item in PickSentences.sentences_hash.items():

374 if item.strip() == str_to_match.strip():

375 return key

376

377 def pick_n_most_similar_sentences(self, sys_sents, n=2):

378 kw_str = ’’

379 toolbelt = SentenceSimilarityMeasures()

380 for kw_id in self.kw_picked_ids:

381 kw_str += self.keywords_hash[kw_id] + ’ ’

382 kw_str = kw_str.rstrip()

383 sim_sentences = {}

384 # get only sentences to send to the similarity method

195

385 simp_sents = [s[’sentence’] for s in sys_sents[’simple’]]

386 sents = toolbelt.calculate_spacy_sim(kw_str, simp_sents, n)

387 sim_sentences[’simple’] = [{’_id’: PickSentences.

return_id_from_hash(item, ’sent’), ’sentence’: item} for item

388 in sents]

389

390 med_sents = [s[’sentence’] for s in sys_sents[’medium’]]

391 sents = toolbelt.calculate_spacy_sim(kw_str, med_sents, n)

392 sim_sentences[’medium’] = [{’_id’: PickSentences.

return_id_from_hash(item, ’sent’), ’sentence’: item} for item

393 in

394 sents]

395

396 complex_sents = [s[’sentence’] for s in sys_sents[’complex’]]

397 sents = toolbelt.calculate_spacy_sim(kw_str, complex_sents, n)

398 sim_sentences[’complex’] = [{’_id’: PickSentences.

return_id_from_hash(item, ’sent’), ’sentence’: item} for item

399 in sents]

400 return sim_sentences

401

402 @staticmethod

403 def print_sentences(sys_sents):

404 if sys_sents[’simple’] and len(sys_sents[’simple’]) > 0:

405 print("Simple sentences")

406 for item in sys_sents[’simple’]:

407 print("%s: %s " % (item[’_id’], item[’sentence’]))

408 if sys_sents[’medium’] and len(sys_sents[’medium’]) > 0:

409 print("Medium sentences")

196

410 for item in sys_sents[’medium’]:

411 print("%s: %s " % (item[’_id’], item[’sentence’]))

412 if sys_sents[’complex’] and len(sys_sents[’complex’]) > 0:

413 print("Complex sentences")

414 for item in sys_sents[’complex’]:

415 print("%s: %s " % (item[’_id’], item[’sentence’]))

416 return 0

417

418 def get_last_index_from_collection(self, collection_name):

419 new_index = 0

420 num_docs_curs = self.client[PickSentences.db_name][

collection_name].find(

421 {}, {

422 "_id": 1}).sort("_id", pymongo.DESCENDING).limit(1)

423 num_docs_curs_l = list(num_docs_curs)

424 if len(num_docs_curs_l) > 0:

425 new_index = num_docs_curs_l[0][’_id’] + 1

426 return new_index

427

428 @staticmethod

429 def save_sents_to_db(pick_sents, auto_sentence_ids):

430 toolbelt = SentenceSimilarityMeasures()

431 if auto_sentence_ids is not None and len(auto_sentence_ids) >

0:

432 simple_sents_to_save = auto_sent_ids[’simple’]

433 med_sents_to_save = auto_sentence_ids[’medium’]

434 complex_sents_to_save = auto_sent_ids[’complex’]

435 else:

197

436 # ask instructor which sentences want to be saved to db in

simple complex and medium

437 simple_sents_to_save = pyip.inputStr(

438 "Please select SIMPLE sentences to be saved for this

passage from this list. Please type the index number of the

sentences separated by a space. Simply hit enter if you do not

want to save any simple sentences.",

439 blank=True)

440 med_sents_to_save = pyip.inputStr(

441 "Next, please select MEDIUM complexity sentences to be

saved for this passage from this list. Please type the index

number of the sentences separated by a space. Hit enter if you do

not want to save any medium complexity sentences.",

442 blank=True)

443 complex_sents_to_save = pyip.inputStr(

444 "Next, please select COMPLEX sentences to be saved for

this passage from this list. Please type the index number of the

sentences separated by a space. Hit enter if you do not want to

save any complex sentences.",

445 blank=True)

446

447 # save to db collection

448 # get the id‘ of last sentence in the collection

449 index_start = pick_sents.get_last_index_from_collection(

PickSentences.sentences_for_passage_collection)

450 simp_ids_to_save = simple_sents_to_save.strip().split(" ") if

len(simple_sents_to_save) > 0 else []

198

451 med_ids_to_save = med_sents_to_save.strip().split(" ") if len(

med_sents_to_save) > 0 else []

452 comp_ids_to_save = complex_sents_to_save.strip().split(" ") if

len(complex_sents_to_save) > 0 else []

453

454 if len(simp_ids_to_save) > 0 or len(med_ids_to_save) > 0 or

len(comp_ids_to_save) > 0:

455 username = pyip.inputStr("Please enter your username: ")

456 for id_ins in simp_ids_to_save:

457 id_ins = id_ins.strip()

458 # identify if sentence is system or user generated

459 if id_ins.upper().startswith("M"):

460 sent_type = "user"

461 else:

462 sent_type = "system"

463 # get the ID number of the sentence (strip the M if

necessary)

464 match = re.match(r"([a-z]?(\d+))", str(id_ins), re.I)

465 sentence_id = match.groups(0)[1]

466 # insert dashed version of sentence

467 kw_matches_in_sent = toolbelt.get_keywords_in_sentence

(pick_sents.get_sentence_from_hash(id_ins.upper()),

468

pick_sents.kw_list)

469

470 insert_tuple = {"_id": index_start,

471 "username": username,

472 "passage_num": pick_sents.chap_choice,

199

473 "sort": pick_sents.filter_choice,

474 "keywords": pick_sents.kw_picked_ids,

475 "sentence_id": int(sentence_id),

476 "sentence_type": sent_type,

477 "difficulty_level": "simple",

478 "sentence_with_spaces": toolbelt.

replace_kw_with_blanks(

479 pick_sents.get_sentence_from_hash(

id_ins.upper()), kw_matches_in_sent),

480 "source": "passage"

481 }

482 try:

483 pick_sents.client[PickSentences.db_name][

PickSentences.sentences_for_passage_collection].insert_one(

484 insert_tuple)

485 index_start = index_start + 1

486 except Exception as exp:

487 print("Error occurred:", exp)

488

489 for id_ins in med_ids_to_save:

490 # identify if sentence is system or user generated

491 if id_ins.upper().startswith("M"):

492 sent_type = "user"

493 else:

494 sent_type = "system"

495 # get the ID number of the sentence (strip the M if

necessary)

496 match = re.match(r"([a-z]?(\d+))", str(id_ins), re.I)

200

497 sentence_id = match.groups(0)[1]

498 kw_matches_in_sent = toolbelt.get_keywords_in_sentence

(pick_sents.get_sentence_from_hash(id_ins.upper()),

499

pick_sents.kw_list)

500 insert_tuple = {"_id": index_start,

501 "username": username,

502 "passage_num": pick_sents.chap_choice,

503 "keywords": pick_sents.kw_picked_ids,

504 "sort": pick_sents.filter_choice,

505 "sentence_id": int(sentence_id),

506 "sentence_type": sent_type,

507 "difficulty_level": "medium",

508 "sentence_with_spaces": toolbelt.

replace_kw_with_blanks(

509 pick_sents.get_sentence_from_hash(

id_ins.upper()), kw_matches_in_sent),

510 "source": "passage"

511 }

512 try:

513 pick_sents.client[PickSentences.db_name][

PickSentences.sentences_for_passage_collection].insert_one(

514 insert_tuple)

515 index_start = index_start + 1

516 except Exception as exp:

517 print("Error occurred:", exp)

518 for id_ins in comp_ids_to_save:

519 # identify if sentence is system or user generated

201

520 if id_ins.upper().startswith("M"):

521 sent_type = "user"

522 else:

523 sent_type = "system"

524 # get the ID number of the sentence (strip the M if

necessary)

525 match = re.match(r"([a-z]?(\d+))", str(id_ins), re.I)

526 sentence_id = match.groups(0)[1]

527 kw_matches_in_sent = toolbelt.get_keywords_in_sentence

(pick_sents.get_sentence_from_hash(id_ins.upper()),

528

pick_sents.kw_list)

529 insert_tuple = {"_id": index_start,

530 "username": username,

531 "passage_num": pick_sents.chap_choice,

532 "keywords": pick_sents.kw_picked_ids,

533 "sort": pick_sents.filter_choice,

534 "sentence_id": int(sentence_id),

535 "sentence_type": sent_type,

536 "difficulty_level": "complex",

537 "sentence_with_spaces": toolbelt.

replace_kw_with_blanks(

538 pick_sents.get_sentence_from_hash(

id_ins.upper()), kw_matches_in_sent),

539 "source": "passage"

540 }

541 try:

202

542 pick_sents.client[PickSentences.db_name][

PickSentences.sentences_for_passage_collection].insert_one(

543 insert_tuple)

544 index_start = index_start + 1

545 except pymongo.errors.DuplicateKeyError:

546 print("You have previously entered this sentence

for this sort type. Skipping. ")

547 except Exception as exp:

548 print("Error occurred:", exp)

549 return 1

550 return 0

551

552 def check_if_sents_already_present(self):

553 # select sentences from database that have matching chapter

choice, filter and have all the requested keywords present

554 all_sentences_filter = self.client[PickSentences.db_name][

PickSentences.sentences_for_passage_collection].find(

555 {’keywords’: {’$all’: self.kw_picked_ids}, # check if

this has accurate values

556 ’sort’: self.filter_choice,

557 "source": "passage",

558 ’passage_num’: int(self.chap_choice)})

559 all_sentences_filter_list = list(all_sentences_filter)

560 # get the sentence matching the id

561 if len(all_sentences_filter_list) > 0:

562 final_sents = {}

563 simp_sents = []

564 med_sents = []

203

565 comp_sents = []

566 for item in all_sentences_filter_list:

567 if item[’difficulty_level’] == ’simple’:

568 if item[’sentence_type’] == ’user’:

569 s = self.client[PickSentences.db_name][

PickSentences.modified_sentences_collection].find_one(

570 {’_id’: int(item[’sentence_id’])},

571 {’sentence’: 1, ’_id’: 0})

572

573 simp_sents.append({’_id’: ’M’ + item[’

sentence_id’], ’sentence’: s[’sentence’]})

574 PickSentences.sentences_hash.update({’M’ +

item[’sentence_id’]: s[’sentence’]})

575 else:

576 s = self.client[PickSentences.db_name][

PickSentences.sentence_collection].find_one(

577 {’_id’: int(item[’sentence_id’])},

578 {’sentence’: 1, ’_id’: 0})

579 simp_sents.append({’_id’: item[’sentence_id’],

’sentence’: s[’sentence’]})

580 PickSentences.sentences_hash.update({item[’

sentence_id’]: s[’sentence’]})

581 elif item[’difficulty_level’] == ’medium’:

582 if item[’sentence_type’] == ’user’:

583 s = self.client[PickSentences.db_name][

PickSentences.modified_sentences_collection].find_one(

584 {’_id’: int(item[’sentence_id’])},

585 {’sentence’: 1, ’_id’: 0})

204

586

587 med_sents.append({’_id’: ’M’ + item[’

sentence_id’], ’sentence’: s[’sentence’]})

588 PickSentences.sentences_hash.update({’M’ +

item[’sentence_id’]: s[’sentence’]})

589 else:

590 s = self.client[PickSentences.db_name][

PickSentences.sentence_collection].find_one(

591 {’_id’: int(item[’sentence_id’])},

592 {’sentence’: 1, ’_id’: 0})

593 med_sents.append({’_id’: item[’sentence_id’],

’sentence’: s[’sentence’]})

594 PickSentences.sentences_hash.update({item[’

sentence_id’]: s[’sentence’]})

595 elif item[’difficulty_level’] == ’complex’:

596 if item[’sentence_type’] == ’user’:

597 s = self.client[PickSentences.db_name][

PickSentences.modified_sentences_collection].find_one(

598 {’_id’: int(item[’sentence_id’])},

599 {’sentence’: 1, ’_id’: 0})

600

601 comp_sents.append({’_id’: ’M’ + item[’

sentence_id’], ’sentence’: s[’sentence’]})

602 PickSentences.sentences_hash.update({’M’ +

item[’sentence_id’]: s[’sentence’]})

603 else:

604 s = self.client[PickSentences.db_name][

PickSentences.sentence_collection].find_one(

205

605 {’_id’: int(item[’sentence_id’])},

606 {’sentence’: 1, ’_id’: 0})

607 comp_sents.append({’_id’: item[’sentence_id’],

’sentence’: s[’sentence’]})

608 PickSentences.sentences_hash.update({item[’

sentence_id’]: s[’sentence’]})

609

610 final_sents[’simple’] = simp_sents

611 final_sents[’medium’] = med_sents

612 final_sents[’complex’] = comp_sents

613 return final_sents

614

615 def get_other_sents_passage(self):

616 all_sentences_filter = self.client[PickSentences.db_name][

PickSentences.sentences_for_passage_collection].find(

617 {’keywords’: {’$all’: self.kw_picked_ids}, # check if

this has accurate values

618 ’sort’: self.filter_choice,

619 "source": "other",

620 ’passage_num’: int(self.chap_choice)})

621 all_sentences_filter_list = list(all_sentences_filter)

622 if len(all_sentences_filter_list) > 0:

623 final_sents = {}

624 simp_sents = []

625 med_sents = []

626 comp_sents = []

627 for item in all_sentences_filter_list:

628 if item[’difficulty_level’] == ’simple’:

206

629 if item[’sentence_type’] == ’user’:

630 s = self.client[PickSentences.db_name][

PickSentences.modified_sentences_collection].find_one(

631 {’_id’: int(item[’sentence_id’])},

632 {’sentence’: 1, ’_id’: 0})

633

634 simp_sents.append({’_id’: ’M’ + item[’

sentence_id’], ’sentence’: s[’sentence’]})

635 PickSentences.sentences_hash.update({’M’ +

item[’sentence_id’]: s[’sentence’]})

636 else:

637 s = self.client[PickSentences.db_name][

PickSentences.sentence_collection].find_one(

638 {’_id’: int(item[’sentence_id’])},

639 {’sentence’: 1, ’_id’: 0})

640 simp_sents.append({’_id’: item[’sentence_id’],

’sentence’: s[’sentence’]})

641 PickSentences.sentences_hash.update({item[’

sentence_id’]: s[’sentence’]})

642 elif item[’difficulty_level’] == ’medium’:

643 if item[’sentence_type’] == ’user’:

644 s = self.client[PickSentences.db_name][

PickSentences.modified_sentences_collection].find_one(

645 {’_id’: int(item[’sentence_id’])},

646 {’sentence’: 1, ’_id’: 0})

647

648 med_sents.append({’_id’: ’M’ + item[’

sentence_id’], ’sentence’: s[’sentence’]})

207

649 PickSentences.sentences_hash.update({’M’ +

item[’sentence_id’]: s[’sentence’]})

650 else:

651 s = self.client[PickSentences.db_name][

PickSentences.sentence_collection].find_one(

652 {’_id’: int(item[’sentence_id’])},

653 {’sentence’: 1, ’_id’: 0})

654 med_sents.append({’_id’: item[’sentence_id’],

’sentence’: s[’sentence’]})

655 PickSentences.sentences_hash.update({item[’

sentence_id’]: s[’sentence’]})

656 elif item[’difficulty_level’] == ’complex’:

657 if item[’sentence_type’] == ’user’:

658 s = self.client[PickSentences.db_name][

PickSentences.modified_sentences_collection].find_one(

659 {’_id’: int(item[’sentence_id’])},

660 {’sentence’: 1, ’_id’: 0})

661

662 comp_sents.append({’_id’: ’M’ + item[’

sentence_id’], ’sentence’: s[’sentence’]})

663 PickSentences.sentences_hash.update({’M’ +

item[’sentence_id’]: s[’sentence’]})

664 else:

665 s = self.client[PickSentences.db_name][

PickSentences.sentence_collection].find_one(

666 {’_id’: int(item[’sentence_id’])},

667 {’sentence’: 1, ’_id’: 0})

208

668 comp_sents.append({’_id’: item[’sentence_id’],

’sentence’: s[’sentence’]})

669 PickSentences.sentences_hash.update({item[’

sentence_id’]: s[’sentence’]})

670

671 final_sents[’simple’] = simp_sents

672 final_sents[’medium’] = med_sents

673 final_sents[’complex’] = comp_sents

674 return final_sents

675

676

677 if __name__ == "__main__":

678 pick_sentences = PickSentences()

679 other_sentences = PickSentencesOtherPassages()

680 toolbelt_sents = SentenceSimilarityMeasures()

681 # get chapter choice, keywords and filter choice from user

682 get_chap = pick_sentences.get_chapter_keywords_and_filter()

683 present_sents = pick_sentences.check_if_sents_already_present()

684 if present_sents is None or len(present_sents) == 0:

685 # pick the default sentences

686 def_sents = pick_sentences.pick_default_sentences()

687 # pick n most similar sentences to keywords

688 most_sim_sentences = pick_sentences.

pick_n_most_similar_sentences(def_sents)

689 print("Here are the simple, medium and complex sentences most

representative of the passage: ")

690 PickSentences.print_sentences(most_sim_sentences)

691 auto_sents_yes_no = pyip.inputMenu(

209

692 [’Choose 1 if you are happy with the current list of

sentences.’,

693 ’Choose 2 if you would like to pick your own sentences.’

],

694 prompt="Please enter the number of the choice you would

like to proceed with: \n",

695 numbered=True)

696 if auto_sents_yes_no == ’Choose 1 if you are happy with the

current list of sentences.’:

697 # get all the ids in str format for the save_sents_to_db

method

698 str_ids = ’’

699 auto_sent_ids = {}

700 for xy in most_sim_sentences[’simple’]:

701 str_ids = str_ids + ’ ’ + str(xy[’_id’])

702 auto_sent_ids[’simple’] = str_ids

703 str_ids = ’’

704 for xy in most_sim_sentences[’medium’]:

705 str_ids = str_ids + ’ ’ + str(xy[’_id’])

706 auto_sent_ids[’medium’] = str_ids

707 str_ids = ’’

708 for xy in most_sim_sentences[’complex’]:

709 str_ids = str_ids + ’ ’ + str(xy[’_id’])

710 auto_sent_ids[’complex’] = str_ids

711 saved_sents = PickSentences.save_sents_to_db(

pick_sentences, auto_sent_ids)

712 print("These sentences have been saved for future use.")

713 else:

210

714 # print system and previously modified sentences

715 PickSentences.print_sentences(def_sents)

716 # check if sentences need to be modified in this session

717 inserted_sents = pick_sentences.modify_sentences()

718 # if yes, append mod_sent list with inserted_sent list,

and reprint all sentences

719 if inserted_sents and len(inserted_sents) > 0:

720 print("Here are the final list of system generated and

modified sentences: ")

721 PickSentences.print_sentences(def_sents)

722 saved_sents = PickSentences.save_sents_to_db(

pick_sentences, [])

723 other_sents = other_sentences.pick_other_sentences(

pick_sentences.kw_picked_ids, pick_sentences.chap_choice,

724

pick_sentences.filter_choice)

725 print("Here are three sentences with the keywords you

requested that have been selected from other passages:")

726 PickSentences.print_sentences(other_sents)

727 # Save other sents in the db too.

728 index_beg = PickSentences.get_last_index_from_collection(

pick_sentences,

729

PickSentences.sentences_for_passage_collection)

730

731 for sent_t, sent_other in other_sents.items():

732 if len(sent_other) > 0:

211

733 full_sentence = pick_sentences.client[PickSentences.

db_name][PickSentences.sentence_collection].find_one(

734 {’_id’: int(sent_other[0]["_id"])},

735 {’sentence’: 1, ’_id’: 0})

736 pick_sentences.sentences_hash.update({int(sent_other

[0]["_id"]): full_sentence[’sentence’]})

737 for sent_t, sent_other in other_sents.items(): # sent_t =

simple|medium|complex sent_other: sentence

738 # with other details

739 if len(sent_other) > 0:

740 kws_in_sent = toolbelt_sents.get_keywords_in_sentence(

741 pick_sentences.get_sentence_from_hash(int(

sent_other[0]["_id"])),

742 pick_sentences.kw_list)

743 insert_row = {"_id": index_beg,

744 "username": pick_sentences.username,

745 "passage_num": pick_sentences.

chap_choice,

746 "sort": pick_sentences.filter_choice,

747 "keywords": pick_sentences.kw_picked_ids

,

748 "sentence_id": int(sent_other[0]["_id"])

,

749 "sentence_type": "system",

750 "difficulty_level": sent_t,

751 "sentence_with_spaces": toolbelt_sents.

replace_kw_with_blanks(

212

752 pick_sentences.

get_sentence_from_hash(int(sent_other[0]["_id"])), kws_in_sent),

753 "source": "other"

754 }

755 try:

756

757 insertOtherResult = pick_sentences.client[

PickSentences.db_name][

758 PickSentences.sentences_for_passage_collection

].insert_one(

759 insert_row)

760 index_beg += 1

761 except pymongo.errors.DuplicateKeyError:

762 print("Sentence %s already in database" %

sent_other[0]["_id"])

763 else:

764 print(

765 "Unfortunately SENCE could not find any %s

sentences from other lessons for this criteria. " % sent_t)

766

767 else:

768 # print system and previously modified sentences

769 print("Sentences have already been picked for this filter and

set of keywords. They are: ")

770 PickSentences.print_sentences(present_sents)

771 inserted_sents = pick_sentences.modify_sentences()

772 # print sentences from other passages

213

773 print("Here are three sentences with the keywords you

requested that have been selected from other passages:")

774 other_sents = pick_sentences.get_other_sents_passage()

775 PickSentences.print_sentences(other_sents)

toolbelt.py

1 import configparser

2 from sklearn.metrics.pairwise import cosine_similarity

3 from sklearn.feature_extraction.text import TfidfVectorizer

4 import numpy as np

5 from sentence_transformers import SentenceTransformer

6 from nltk.metrics import edit_distance

7 import spacy

8 from spacy.matcher import Matcher

9

10

11 class SentenceSimilarityMeasures:

12 def __init__(self):

13 self.tfidf_vectorizer = TfidfVectorizer()

14 self.model = SentenceTransformer(’bert-base-nli-mean-tokens’)

15 self.nlp = spacy.load(’en_core_web_sm’)

16

17 def tfidf_cos_sim(self, corpus):

18 tfidf_matrix = self.tfidf_vectorizer.fit_transform(corpus)

19 cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix)

20 avg_cos_sim = np.average(cosine_sim, axis=1)

21 return avg_cos_sim

214

22

23 def tfidf_cos_sim_compare_single_sentence_to_corpus(self, sentence

, corpus):

24 cosine_sim = []

25 for sent in corpus:

26 tfidf = self.tfidf_vectorizer.fit_transform(sentence, sent

)

27 cosine_sim.append(cosine_similarity(tfidf[0], tfidf[1])

[0][0])

28 return min(cosine_sim)

29

30 def sentence_sim_bert(self, corpus):

31 sentence_embeddings = self.model.encode(corpus)

32 cosine_sim = cosine_similarity(sentence_embeddings,

sentence_embeddings)

33 avg_cos_sim = np.average(cosine_sim, axis=1)

34 return avg_cos_sim

35

36 # this method uses spacy to identify the sentence (from a list of

sentences) closest to a group of words

37 def calculate_spacy_sim(self, words_to_compare, sents,

num_to_return=1):

38 sims = []

39 sents_return = []

40 doc1 = self.nlp(words_to_compare)

41 # find the similarity measure between the list of words and

the sentence

42 for sent in sents:

215

43 doc2 = self.nlp(sent)

44 sims.append(doc1.similarity(doc2))

45 npcs = np.array(sims)

46 # sort the indices in descending order

47 ascending_order_index = npcs.argsort()

48 npcs_index_array = ascending_order_index[::-1] # we need

reverse order since we want the top ’x’ values

49 # retrieve the num_to_return most similar sentences

50 for ind in range(0, num_to_return):

51 try:

52 sents_return.append(sents[npcs_index_array[ind]])

53 except IndexError:

54 break

55 return sents_return

56

57 # this method inputs the typo word and a list of keywords. It uses

NLTK edit distance to find the closest matched keyword

58 @staticmethod

59 def typos_closest_match(typo, keywords, limit=2):

60 dist = 99

61 match = typo

62 typo = typo.lower()

63 kw_lower = [k.lower() for k in keywords]

64 for kw in kw_lower:

65 edit_dist = edit_distance(typo, kw)

66 if edit_dist < dist and edit_dist <= limit:

67 dist = edit_dist

68 match = kw

216

69

70 return match

71

72 # this method accepts a sentence and a list of keywords for the

lesson and identifies

73 # which keywords are present in the sentence

74 def get_keywords_in_sentence(self, sentence, kw_list):

75 # kw_list = [AssessSentences.keywords_hash[k_id] for k_id in

kw_ids]

76 match_list = []

77 doc = self.nlp(sentence.lower())

78

79 matcher = Matcher(self.nlp.vocab)

80 for item in kw_list:

81 matcher.add("matched kw", [[{’LEMMA’: item}]])

82 matches = matcher(doc)

83 for match_id, start, end in matches:

84 span = doc[start:end]

85 # store the matched keyword, and the starting and ending

token index

86 match_list.append({’keyword’: span, ’start’: start, ’end’:

end})

87 return match_list

88

89 # this method checks to see if an honorific such as Mr. Mrs., Miss

etc. is present in a phrase

90 def check_for_honorific(self, phrase):

91 doc = self.nlp(phrase)

217

92 for tok in doc:

93 if tok.pos_ == ’PROPN’ and tok.text[-1] == ’.’: # check

if token is a proper noun

94 # and the final character is a dot.

95 return True

96 else:

97 return False

98

99 def replace_kw_with_blanks(self, sentence, matched_keywords):

100 config = configparser.ConfigParser()

101 try:

102 config.read(’../config.ini’)

103 sentence_blank = config[’SENTENCES’][’sentence_blank’]

104 except KeyError:

105 config.read(’config.ini’)

106 sentence_blank = config[’SENTENCES’][’sentence_blank’]

107 sent = self.nlp(sentence)

108 new_sent = ’’

109 used_kw = []

110 for kw_item in matched_keywords:

111 if kw_item[’keyword’].text not in used_kw:

112 # check if sent[0:kw_item[’start’].text has an

honorific such as Mr. Mrs. etc. to account for the bug

113 # in Matcher. Matcher looks at Mr. as one token, spacy

tokenizer sees them as two.

114 if self.check_for_honorific(sent[0: kw_item[’start’]].

text):

115 start = kw_item[’start’] - 1

218

116 end = kw_item[’end’] - 1

117

118 else:

119 start = kw_item[’start’]

120 end = kw_item[’end’]

121 new_sent = sent[0: start].text + sent[

122 start - 1].whitespace_ # If tokens have been

123 # skipped, add them in (with trailing whitespace if

available)

124 new_sent += sentence_blank + sent[start].whitespace_

Replace token, with trailing

125 # whitespace if available

126 new_sent += sent[end:].text # add remainder of the

sentence

127 sent = self.nlp(

128 new_sent) # for more than one keyword in the

sentence, regenerate the tokenized form of

129 # the sentence to repeat this process

130 used_kw.append(

131 kw_item[’keyword’].text) # this is so that we don

’t add the same keyword as multiple dashes

132 return new_sent

133

134 def replace_words_in_sentence(self, sentence, word, pos_to_replace

):

135 sent = self.nlp(sentence)

136 word = word.strip()

137 new_sent = sent[0: pos_to_replace].text + sent[

219

138 pos_to_replace - 1].whitespace_ # If tokens have been

skipped, add them in (with trailing whitespace

139 # if available)

140 new_sent += word + sent[pos_to_replace].whitespace_ # Replace

token, with trailing

141 # whitespace if available

142 new_sent += sent[pos_to_replace + 1:].text # add remainder of

the sentence

143 return new_sent

144

145 def find_match_return_tok_pos(self, sentence, keywords):

146 doc = self.nlp(sentence.lower())

147 used_kw = []

148 tok_pos = {}

149 for token in doc:

150 if token.lemma_ in keywords and token.lemma_ not in

used_kw:

151 tok_pos[token.text] = token.i # return a dict of

matched keyword to index of word in sentence

152 used_kw.append(token.lemma_)

153 return tok_pos

220

Vita

Born in Chennai, India, Tabitha K. Samuel completed her Bachelor’s in Computer

Science and Engineering from Easwari Engineering College in 2005. She worked for

two years as a Software Engineer at Infosys, Limited, a top IT and software services

company in India. This is where she learned much about software development

methodologies that have served her well for decades. She moved to Knoxville,

Tennessee in 2007 to join the Masters in Computer Science program. With Dr. Berry

as her advisor she completed her Masters’ project on a Performance Evaluation of the

MATLAB Parallel Computing Toolbox for Parallel Implementations of Nonnegative

Tensor Factorization. On graduation in 2009, she joined the National Institute

for Computational Sciences (NICS) at the University of Tennessee, Knoxville as a

User Support Specialist for (at that time’s) world’s fastest academic supercomputer

- Kraken. There, she discovered the remarkable and diverse world of academic

research computing, and has been a part of its ecosystem since. Tabitha has

worked at NICS for over 15 years and currently serves as its interim Director. An

active Research Computing and Data (RCD) community member, Tabitha is co-

PI of the Building Research Innovation at Community Colleges (BRICCs)-Pathways

and BRICCs-Research Data Management NSF projects, focusing on collaborative

CI advancement and data management. She is also the co-founder of Tennessee-

RCD, a platform for collaboration and regional advancement in cyberinfrastruc-

ture for RCD professionals in Tennessee. More information can be found at:

https://www.linkedin.com/in/tabithasamuel/.

221

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	1.1 Motivation

	2 Background Work in Audiology and Speech Pathology
	3 Background Work in Natural Language Processing
	4 Research Problem
	4.1 Accessible interfaces to an NLP solution
	4.2 Blending human input with NLP responses
	4.3 Assessing how NLP tools can parse different media formats
	4.4 Scaffolding complexity to reinforce vocabulary knowledge

	5 Proposed Architecture
	5.1 Corpus parsing and storage
	5.2 Lesson-specific keyword and sentence selection and storage
	5.3 Major Libraries and Software Used

	6 Database Design
	7 Description of Methodology with Results
	7.1 Corpus parsing and storage
	7.1.1 SENCE corpus parsing
	7.1.2 SENCE text parsing
	7.1.3 Error Checking
	7.1.4 Collection constraints

	7.2 Keyword extraction
	7.2.1 Evaluation of different keyword extraction methods
	7.2.2 Error Checking
	7.2.3 Collection Constraints

	7.3 SENCE Sentence retrieval based on keywords
	7.3.1 Choice of lemmatizer
	7.3.2 Error checking
	7.3.3 Collection Constraints

	7.4 Sort Criteria
	7.4.1 Sort type: Sentence length
	7.4.2 Sort type: Number of keywords
	7.4.3 Sort type: Syntactic Dependency of Keyword relative to the Sentence
	7.4.4 Sort type: Number of Tier 2 and 3 words in sentence
	7.4.5 Comparison of sort types
	7.4.6 Flow of Operations

	7.5 Storing sentences based on search criteria
	7.5.1 Identifying and replacing keywords in a sentence with dashes

	7.6 Assessing students' vocabulary comprehension
	7.6.1 Displaying results

	7.7 Evaluation of keyword and sentence extraction from different media
	7.7.1 Results with Storybook texts
	7.7.2 Television shows

	8 Conclusions and Broader Impacts
	8.1 Broader Impacts

	9 Future Work
	Bibliography
	A Raw Text from story books and television show transcripts
	A.1 Raw Text from Project Gutenberg's The Tale of Peter Rabbit transcript
	A.2 Raw Text from Continue to Know with WHRO - Rocks! transcript
	A.3 Raw Text from WHROTV - Bill Nye the Science Guy - Photosynthesis
	A.4 Raw text from Daniel Tiger - Baby is Here: At the hospital transcript

	B Keywords comparison from different Keyterm extraction packages
	C Text of passages used for Keyword extraction comparison in Chapter 7
	C.1 Water Takes Three Forms, Grade 2, Topic area: Science
	C.2 Light and Objects, Grade 3, Topic area: Science
	C.3 American Government - James Madison: A Man with a Plan, Grade 4, Topic area: Social Studies

	D SENCE code
	Vita

