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Abstract

Tensors, or n-way arrays, are incredibly useful for storing indexable data in

an arbitrary number of dimensions. Interest in tensor analysis using tensor

decomposition has expanded to a variety of fields, including data mining, signal

processing, computer vision, and machine learning. Tensors modelling interesting

data may also be sparse, where the majority of its values are zero. These tensors can

be extremely large and contain millions of entries that cannot be stored explicitly.

To address this problem, various formats have arisen in the past decade to compress

and compact such massive data. However, most of these existing structures are static

and do not support tensor updates. This motivated the proposal of a new format

in 2021, Hashed Coordinate Storage (HaCOO), a mode-agnostic format that stores

sparse tensor indexes and values in a separate chaining hash table to rapidly insert

and access arbitrary entries in constant time. To investigate the benefits of this

novel format, we introduce a MATLAB class to create and manipulate sparse tensors

in HaCOO format. This class was evaluated alongside MATLAB Tensor Toolbox

using several real-world sparse tensor datasets to compare tensor update capability

and MTTKRP, a key kernel in Canonical Polyadic Decomposition. Additionally, we

discuss how HaCOO format can greatly accelerate building document tensors in a

practical application of using sparse tensor decomposition in a text analysis model.
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Chapter 1

Introduction

Tensors, or n-way arrays, can express data in an arbitrary number of dimensions.

Interest in tensor analysis has expanded to a variety of fields including data mining

[12], text analysis [4], machine learning [22], chemometrics [9], signal processing [13],

neuroscience [6], computer vision [28], and more. Similar to storing values in a two-

way matrix, tensors can store data in any number of dimensions. Many important

application domains produce and manipulate massive amounts of multidimensional

data; for example, a database that stores customer data. Expressing this data as a

tensor is an intuitive way of organizing any number of customers with an arbitrary

number of dimensions. In tensor form, individual attributes of any customer can be

referenced by a unique location, or index.

Tensor data can also be sparse, where the majority of its entries are zero. Consider

the previous example using a tensor to represent customer data. Suppose a field

is reserved to track whether a customer has purchased a specific product using a

binary flag indicator. If we isolate our view to a single customer and the individual’s

purchased products, it is likely that the customer has not purchased the majority

of items offered, so most values would be represented by zero. It can be reasonably

inferred that this is typical customer behavior, so a tensor representing this data
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would be sparse. However, it is not efficient to store this data in dense format, if we

only consider nonzero values to be meaningful.

Therefore, the question of how to efficiently store and work with sparse tensor data

has been the focal point of various research in the past decade. Multiple specialized

sparse tensor formats have been developed, ranging from list, block, and tree data

structures. While all of these formats offer varying ranges of benefits and drawbacks,

most formats produce static data structures and are unable to support tensor updates,

such as inserting a new value, without completely rebuilding from scratch. This issue

motivated this study to implement a recently proposed sparse tensor storage format,

known as Hashed Coordinate format, or HaCOO, which uses hashing to quickly insert

and reference sparse tensor entries. Chapter 2 introduces basic tensor concepts and

notation, as well as Canonical Polyadic tensor decomposition and its role in tensor

analysis. Section 2.3 provides an overview of common sparse tensor formats, as well

as HaCOO format. Chapter 3 discusses our approach for a robust MATLAB HaCOO

class implementation. Chapter 4 presents evaluations for this class compared to

MATLAB Tensor Toolbox, which uses Coordinate, or COO format, the de-facto

standard sparse tensor storage format. Chapter 5 discusses HaCOO format in a

practical application of text analysis using influence modeling. Chapter 6 presents

conclusions as well as future goals.
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Chapter 2

Background

This paper follows the conventional notation described in Kolda and Bader’s Survey

of Sparse Tensor Applications [11]. A reference for relevant symbols and notation is

provided in Table 2.1.

2.1 Notation and Terminology

Although the term “tensor” is shared with fields such as physics and engineering,

this discussion concerns the coordinate form of a tensor, which is a multimodal array.

A tensor is typically represented using calligraphic letters (e.g. X ). The order of a

tensor, or N , is determined by the number of ways, or modes. Vectors, or tensors

of order one, are denoted by boldface letters, and matrices, or tensors of order two,

are denoted by capital boldface letters. Tensors of order three and above are simply

called higher order tensors. For the sake of simplicity, a three-way tensor, or a cube,

seen in Figure 2.1, will be used for discussion, but concepts can be extended to an

arbitrary number of dimensions. As with matrices, tensor elements can be accessed

using subscripts. Given a three-way tensor X ∈ RI×J×K , the i, j, kth entry can be

written as Xi,j,k.
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Table 2.1: Tensor notation.

Notation Description
X Tensor
N Tensor order
M Number of nonzeros in X
Xi,j,k Element at (i, j, k) of X
X:,j,k Column fiber of X
Xi,:,: Horizontal slice of X
A Matrix
a Vector
Ai,j Element at index (i, j) of matrix A
ai Element at index i of vector a
∗ Hadamard product
⊗ Kronecker product
⊙ Khatri-Rao product

Figure 2.1: A third-order tensor.
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Fibers and Slices

Subsets of tensor elements can be extracted by using a colon (:) to refer to all indexes

in that mode. A tensor fiber can be formed by fixing all but one mode. Similarly,

fixing all but two modes results in a tensor slice. All variations of fibers and slices of

a three-way tensor are illustrated in Figure 2.2.

Matricization

A tensor can be matricized, or unfolded along any of its modes. A matricized tensor

unfolded along the nth mode is denoted by X(n), which is composed of mode-N fibers.

For example, given the following frontal slices of tensor X :

X1 =


1 4

2 5

3 6

 X2 =


7 10

8 11

9 12

 ,

its respective matricizations would be

X(1) =


1 4 7 10

2 5 8 11

3 6 9 12

 , X(2) =

 1 2 3 7 8 9

4 5 6 10 11 12

 ,

X(3) =

 1 2 3 4 5 6

7 8 9 10 11 12

 .

Several matrix and tensor products play an important role in Canonical Polyadic

Decomposition, which is discussed in upcoming Section 2.2. The Hadamard product

is an element-wise multiplication of matrices, denoted by A ∗ B. Element (i, j) of

A ∗ B is determined by A(i, j) × B(i, j). The Kronecker product [11] of matrices

A ∈ RI×J and B ∈ RK×L is denoted by A ⊗ B. The resultant matrix A ⊗ B is of

size (IJ)× (KL) and is defined by:
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Figure 2.2: Third-order tensor fibers and slices [11].
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A⊗B =


a11B a12B . . . a1JB

a21B a22B . . . a2JB
...

...
. . .

...

aI1B aI2B . . . aIJB


= [a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 . . . aJ ⊗ bL−1 aJ ⊗ bL].

The Khatri-Rao product [24] is defined in terms of the Kronecker product. The

Khatri-Rao product of matrices AI×J and BM×J is written as A⊙B:

A⊙B = [a1 ⊗ b1, a2 ⊗ b2, . . . , an ⊗ bn],

where the resulting matrix’s size is (IM)× J .

The outer product [22] of two vectors is the product of the vector’s elements,

denoted by ◦. We can calculate the outer product of two vectors a and b to produce

matrix X given by:

X = a ◦ b = abT .

We can extend the outer product to a general tensor outer product [17]. Given

three vectors a, b, and c, we can construct a third-order tensor X where each element

is obtained by:

Xijk = aibjck.

2.2 Canonical Polyadic Decomposition

Canonical Polyadic Decomposition, or CP, is a commonly used technique in tensor

analysis. The goal of CP is to approximate a mode-N tensor X as the sum of R

rank-1 tensors. A tensor is rank-1 if it can be written as the outer product of N
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vectors, illustrated in Figure 2.3. If we are computing a rank R CP decomposition

for a third-order tensor X I×J×K , we are mainly interested in solving for three factor

matrices, which are the combination of the vectors from the rank-1 tensors: A ∈ RI×R,

B ∈ RJ×R, and C ∈ RK×R.

One way to achieve this is by using the Alternating Least Squares, or ALS, method.

During each iteration of CP, one factor matrix is solved for, while the remaining

matrices are fixed. This process is repeated, taking turns solving for one factor

matrix in an alternating fashion. For the three-way case, the ALS approach would

fix factor matrices B and C to solve for matrix A:

A = min
A

∥ X(1) −A(C⊙B)T ∥2F .

This problem is minimized by:

A = X(1)[(C⊙B)T ]†,

but is usually preferred in the following form:

A = X(1)(C⊙B)(CTC ∗BTB)†. (2.1)

This form only requires calculating the pseudo-inverse of an R×R matrix, instead

of [(C ⊙ B)T ]†, which results in a (JK)× R matrix. This process is reapeated until

an acceptable error threshold from the original tensor is reached or the maximum

number of iterations is reached.

2.2.1 MTTKRP

In Equation 2.1, we need to note the calculation X(1)(C ⊙ B), which is called the

Matricized Tensor Times Khatri-Rao Product, or MTTKRP. MTTKRP must be

performed for each mode, every iteration of ALS, and is the typical bottleneck of CP.
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Figure 2.3: CP Decomposition of a third-order tensor [11].
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Explicitly forming the product C ⊙ B results in a dense matrix of size (JK) × R,

which usually requires a massive amount of memory. Therefore, specialized MTTKRP

algorithms are needed for dealing with sparse tensors. For instance, Algorithm 1

formulates MTTKRP as accumulated sparse tensor-vector products and only requires

traversing each tensor element once, in any order.

2.3 Related Work

This section provides an overview of leading sparse tensor formats. Coordinate

format, or COO, is regarded as the de-facto standard for sparse tensor storage.

COO format was first introduced in Kolda and Bader’s 2009 Survey of Sparse Tensor

Applications. COO stored tensor indexes tuples organized into either an ordered

or unordered list, illustrated in Figure 2.4 [11]. COO’s versatility and flexibility

has made it the favored format for applications like TensorFlow, MATLAB Tensor

Toolbox, and sparse tensor repository FROSTT [25, 5, 23].

Hierarchical Coordinate (HiCOO) format organizes a sparse tensor into individual

sparse tensor blocks. To convert a COO sparse tensor to HiCOO format, all elements

are encoded and sorted using Z-Morton order, which is a space filling curve that maps

multidimensional data to one-dimension [21]. The resulting mapping is called a Z-

value, or Morton code [21]. An index’s Morton code can be obtained by interleaving

the individual bits of each index component, resulting in a unique integer representing

its location on the curve. To better illustrate this process, the following example is

provided. We begin with a COO sparse tensor in part (a) of Figure 2.5. Part (b)

shows an equivalent tensor converted to a binary representation.

Next, the bits of individual index components must be interleaved, shown in part

(c) in Figure 2.6. The result yields the values in columns bi, bj, and bk, which form

a block index, and columns ei, ej, and ek, which indicate the location of that index
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Figure 2.4: A sparse tensor in COO format [14].

Algorithm 1: MTTKRP via Sparse Tensor-Vector products [24]

Input: indI[M ], indJ [M ], indK[M ], vals[M ] dense matrices BJ×R, CK×R

Output: dense matrix MI×R

1 for f=0 to F do
2 for z=0 to M do
3 t[z] = vals[z] ∗B(indJ [z], f) ∗C(indK[z], f) ;
4 end
5 for z=0 to M do
6 M(indI[z], f) = M(indI[z], f) + t[z] ;
7 end

8 end
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within the block. If we read each index’s Morton code as a binary representation of an

integer, rows 5-8 have integer values of 34, 56, 37, and 62, respectively. To maintain

ascending order, rows 6 and 7 must swap places. Indices are then partitioned using

the block index bits by matching bit patterns. In part (d) of Figure 2.6, four distinct

patterns of bits are partitioned into four blocks. The beginning index of each block

is stored in a bptr array, indicated in part (e) of Figure 2.7. As a result, indices are

compressed within their own block and require a smaller amount of bits. Additionally,

there is no need to convert indexes back to COO format, since individual elements can

be referenced using the block size B and block indexes. In Figure 2.7, the location of

any index can be retrieved by using the formula i = bi×B + ei, j = bj ×B + ej, and

k = bk×B + ek [14].] Since blocks are limited to a pre-specified size, search space is

greatly reduced when retrieving arbitrary values. Due to its partitioning scheme, the

degree of compression offered by this format is sensitive to how tensor elements are

distributed, resulting in less compression for extremely sparse tensors [26].

Flagged Coordinate format (F-COO) is also derived from COO format and gears

toward reducing COO’s memory requirements as well as enabling unified tensor

computations; that is, using a single storage format for tensor operations over multiple

modes [15]. F-COO stores tensor mode indexes and values in separate arrays as a list,

but also incorporates two additional arrays: a bit-flag (bf) array and start-flag (sf)

array. These arrays serve the purpose of capturing changes in tensor computations.

For example, part (b) in Figure 2.8 has replaced mode one with a bf array, where a

change from 0 to 1 indicates a change in mode one. Within each partition, the sf

array indicates if a new fiber or slice begins within the partition. Note that the first

partition will always be 1, since it will always begin a new fiber or slice. Instead of

explicitly storing every mode like COO, F-COO achieves increased memory efficiency

since it only stores the indices on the product mode and an entire mode is replaced

by a smaller bit flag array. Other formats aim to further reduce COO’s memory

footprint, such as Compressed Sparse Fiber (CSF) format, introduced by Smith and
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Figure 2.5: (a) COO tensor and (b) an equivalent table with all index components
converted into their binary representation.

Figure 2.6: (c) Table of Morton codes obtained from the indexes in part (a) of
Figure 2.5. (d) Partitioning indexes into blocks based on the number of unique bit
patterns formed from bi, bj, and bk.
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Figure 2.7: Converted HiCOO tensor [14].

Figure 2.8: (a) COO sparse tensor and (b) its equivalent representation in Flagged
Coordinate (F-COO) format [14].
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Karypis in 2015 [24]. CSF acts as an extension of Compressed Sparse Row (CSR)

format, a common technique to compress two-dimensional matrices. To generalize

this approach to an arbitrary number of dimensions, CSF organizes tensor slices into

a list of fibers into a tree-like structure, seen in part (b) in Figure 2.9. Each tensor

mode corresponds to a level in the tree while the leaves represent non-zero values.

Tracing a path from root to leaf builds the value’s corresponding index. Duplicate

indices are eliminated when a node is split into a sub-tree or a leaf, which results in

all but one mode being compressed in the tree [26]. Since a tensor can be stored in

along any mode, you can create multiple representations of the same sparse tensor.

This property qualifies CSF as a mode-specific format, which can impact performance,

depending on which mode a tensor operation must be calculated. Therefore, it may

be necessary to store additional representations of the same tensor.

The current state-of-the-art is known as Adaptive Linearized Storage of Sparse

Tensors (ALTO), proposed by Helal et. al. in 2021 [8]. ALTO stores nonzero elements

along a line using a bit mask based on mode cardinalities. The bit mask is based on

the number of bits required to represent each mode, encoding the modes from right

to left for the smallest mode first while interleaving the bits for the larger modes. The

final bit mask is used to generate the index’s unique position in its ALTO tensor.

Each nonzero, represented in part (a) in Figure 2.10 as a dark rectangle,

corresponds to its ALTO counterpart in part (c), indicated by a dotted line. Mapping

COO entries to the ALTO tensor requires the use of the ALTO bit mask in part (b),

which is generated from the cardinalities of the tensor modes. The tensor’s modes

in part (a) is 4 × 4 × 3, or modes i,j, and k, respectively. Each dimension requires

two bits to be written in binary, so the total number of bits required to represent all

modes is 6, or the length of the ALTO bit mask. Starting from the least significant

bit on the right, the bit for the k mode is encoded, since it is the smallest mode,

then the i and j modes, which are the same size. Therefore, the corresponding bit

mask bi,1, bj,1, bk,1, bi,0, bj,0, bk,0 is used to both linearize COO entries and de-linearize

an ALTO tensor’s compressed indexing metadata.

15



Figure 2.9: (a) COO format sparse tensor and (b) its equivalent representation in
Compressed Sparse Fiber (CSF) format over mode i [14].

Figure 2.10: Converting a COO tensor to an ALTO tensor.

16



2.4 HaCOO Format

Hashed Coordinate format, or HaCOO, is a novel sparse tensor storage format

introduced by Lowe et al. in 2021, and is this paper’s primary focus [16]. Table 2.2

contains helpful terms and notation used when discussing this format. HaCOO uses

a separate chaining hash table to store sparse tensor indices. Each entry in the table

contains two fields, the index’s Morton encoding and its corresponding value. Similar

to HiCOO, HaCOO uses z-order mapping in conjunction with a hashing function to

map COO indexes to a hash key. Pseudocode to obtain an index’s Morton encoding

using bit masking is shown in Algorithm 2 [16].

To further reduce the collision rate, another function is applied to uniformly

distribute values across the hash table. This algorithm draws inspiration from Bob

Jenkins’ One-at-a-time hashing function, which was originally published in the Dr.

Dobbs Journal [10]. Algorithm 3 determines three values, sx, sy, and sz, which are

required by Algorithm 4 [16]. These were scaled from the original 32-bit Jenkins

hash to account for an arbitrary number of bits. Algorithm 4 uses a series of bitwise

operations to mix the bits of the Morton code. This results in index values being

distributed uniformly along the hash table.

The final step is to constrain the hash key to the size of the table by applying

the modulus operation. If an index maps to an already filled slot, the new entry is

appended to the end of that slot’s list. This occurrence is called a hash collision. To

allow for fast modulus operations via bit-masking, the size of the hash table always

grows by a power of two. If the number of entries exceeds the table’s load factor, or

the maximum percent of buckets that can be occupied without increasing the number

of buckets in the table. If the number of non-zero entries is known in advance, the

hash table’s size can be determined using:

Tsize = 2⌈log(M/load factor⌉).

17



Table 2.2: Table of HaCOO algorithm notation.

Symbol Description

nbuckets Number of buckets/slots in the hash table

bits Number of bits

mask Bit mask

morton(i) Morton encoding of index i

| Logical OR

& Logical AND

⊕ Logical XOR

≪ Bitwise left shift

≫ Bitwise right shift

⌈x⌉ Ceiling of x

maxx,y Maximum value of x and y

Algorithm 2: Morton Encoding Function

Input: Tensor index as a list of non-negative integers vals
Output: Morton encoding of the index result

1 result = 0
2 n = length(vals)
3 /* set the right most bit to act as as a bit mask */ bit = 1
4 /* loop to interleave the individual bits of each integer into “result” */
5 while sum( vals) ̸= 0 do
6 for i in range(n) do
7 /* use the masking bit to copy one bit from “value” into “result” */
8 if vals [i] & 0x1 not equal 0 then
9 result = result | bit

10 end
11 /* shift the integer to the right once and masking bit to the left to get

the next bit from the value */
12 vals [i] = vals [i] ≫ 1
13 bit = bit ≪ 1

14 end

15 end

18



Algorithm 3: Hash Values

Input: number of buckets in hash table nbuckets

Output: sx, sy, sz, mask

1 bits = log2 (nbuckets)

2 sx = ceil(bits / 8) − 1

3 sy = 4 ∗ sx- 1

4 sz = ceil(bits / 2) − 1

5 mask = nbuckets-1

Algorithm 4: Hash Algorithm

Input: list of non-zero integers index

Output: morton value m, hash key k

1 m = morton(index)

2 hash = hash + hash ≪ sx

3 hash = hash ⊕hash ≫ sy

4 hash = hash + hash ≪ sz

5 k = hash & mask

Table 2.3: Hashing parameters calculated using Algorithm 3 given the COO tensor
in Figure 2.11.

.

nbuckets = 16 sx = 0

bits = 4 sy = 1

mask = 15 sz = 2

19



Figure 2.11 illustrates the process of converting a COO tensor to HaCOO format.

Table 2.3 provides hashing parameters and Table 2.4 displays the intermediate steps

of obtaining each index’s hash key.

2.5 Motivation

Despite improvements over the past decade, the memory reduction offered by several

formats can be heavily affected by the spatial distribution of elements within a sparse

tensor. Furthermore, formats such as HiCOO, F-COO, and ALTO, do not support

updates or insertion of new elements without rebuilding the tensor from scratch.

Each of these formats must first sort all nonzero tensor elements before partitioning

them into its respective data structure. Adding new elements could potentially affect

ALTO’s bit mask, which relies on mode cardinalities, or alter HiCOO’s partitioning

of its sparse tensor blocks.

Furthermore, sorted COO requires some additional steps to insert a tensor index.

In relation to the number of tensor nonzeros (M), a binary search of complexity

O(log(M)) is required to find the index insertion location, then O(M) to perform an

in-order insertion [26]. In comparison, HaCOO maintains an amortized O(1) constant

insertion and retrieval time [16]. This opens up new possibilities for “on the fly”

sparse tensor updates. Another issue is that several common sparse tensor formats

are implemented in standalone libraries; CSF in The Surprisingly ParalleL spArse

Tensor Toolkit (SPLATT), HiCOO in A Parallel Tensor Infrastructure! (ParT!),

ALTO in ALTO, and so on. Although these libraries can be extremely beneficial,

setting up multiple computing environments to handle several standalone libraries

can be an added burden on the user. Tew’s study of sparse tensor formats observes

that creating a “master” library would be an incredibly massive task to undertake,

as well as present the issue of maintaining a vast repository of code. Regardless, Tew

asserts that consolidating these formats into one interface would be worthwhile to

increase accessibility and provide quality of life improvements [26].

20



Figure 2.11: Converting a COO tensor to HaCOO format.

Table 2.4: Applying the Jenkins One-at-a-time hash function to COO indexes.
Columns 2-6 indicate the result after executing lines 1-5 of Algorithm 4.

idx morton step 2 step 3 step 4 k

0, 0, 0 000000 0000000 0000000 000000000 0

0, 1, 0 000010 0000100 0000110 000011110 14

1, 0, 0 000001 0000010 0000011 000001111 15

1, 0, 2 100001 1000010 1100011 111101111 15

2, 1, 0 001010 0010100 0011110 010010110 6

2, 2, 2 111000 1110000 1001000 101101000 8

3, 0, 1 001101 0011010 0010111 001110011 3

3, 3, 2 111011 1110110 1001101 110000001 1
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Presently, we do not have such a master library. These considerations motivated

the decision to implement HaCOO in MATLAB. Additionally, a library to use and

manipulate dense and sparse tensors already exists for the application, known as

Tensor Toolbox. The library contains classes to store both dense and sparse tensors,

manipulation methods, tensor arithmetic, as well as implementations for common

tensor decomposition algorithms. By integrating the new HaCOO class into an

already existing a suite of tools, users can benefit from a variety of sparse tensor

format options.

2.6 FROSTT Tensors

This study uses a number of tensors from the Formidable Repository of Open Sparse

Tensors and Tools (FROSTT), a publicly available collection of various data to

facilitate reproducible sparse tensor research. A summary of tensor characteristics

are provided in Table 2.5. The data sets are summarized as follows:

The Uber tensor contains data on Uber pickups in New York City from April

2014 through August 2014. Modes represent dates-hours-latitudes-longitudes.

The NELL-2 tensor is a smaller version of NELL-1 with most sparse indices

pruned. NELL-1 is pulled from the Never Ending Language Learner knowledge

base, part of a machine learning project from Carnegie Mellon University [3].

Non-zeros represent entity-relation-entity tuples.

The Enron tensor is email data that was publicly released during an investi-

gation by the Federal Energy Regulatory Commission. The modes represent

sender-receiver-word-date.

The Chicago tensor contains data on crime reports in the city of Chicago, where

modes represent day-hour-community-crimetype, where a community is one of

the communities of Chicago.
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The NIPS tensor contains publications from the NeurIPS Conference on Neural

Information Processing Systems from 1987 to 2003. Modes represent paper-

author-word-year.

The LBNL tensor contains ten days of anonymized internal network traffic

from Lawrence Berkeley National Laboratory (LBNL)/International Computer

Science Institute (ICSI). The modes are sender IP-sender port-destination IP-

destination port-time, and the values are the total packet length sent in a

timestep (one second).

Table 2.5: Characteristics of FROSTT sparse tensors [23].

tensor M dimensions storage

uber 3.3M 183 × 24 × 1.1K × 1.7K 52.9 MB

nell-2 76.9M 12.1K × 9.2K × 28.8K 1.51 GB

enron 54.2M 6K × 5.7K × 1.2K 1.2 GB

chicago 5.3M 6.2K × 24 × 77 × 32 80 MB

nips 3.1M 2.5K × 2.9K × 14K × 17 58.9 MB

lbnl 1.7M 1.6K × 4.2K × 1.6K × 4.2K × 868.1K 55.1 MB
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Chapter 3

Approach

3.1 Modified HaCOO Hashing

HaCOO’s hashing algorithm initially converts each sparse tensor index to its

corresponding Morton code by interleaving the index’s bits, then applies the Jenkins’

One-at-a-Time hash to obtain its hash key. Unlike the original algorithm, we found

that omitting the Morton encoding step, concatenating all index components into one

integer, then applying the One-at-a-Time hash was sufficient for maintaining a low

collision rate and decreasing the maximum probe depth. Several FROSTT tensors

were used for evaluating both hash functions. Dataset characteristics are provided in

Section 2.6. Relevant evaluations are presented in Tables 3.1 and 3.2 to compare the

original algorithm and the modified algorithm. Columns represent the tensor, collision

rate, mean probe depth within a chain, maximum probe depth within a chain, and

the mode and median number of entries per bucket. These results motivated the

choice to implement the modified hash function in the final MATLAB HaCOO class.

Instead of storing each index’s Morton code, indexes were stored explicitly.
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Table 3.1: Hashing statistics using the original hash algorithm.

Collision Mean Median Mode Max
Tensor Rate Probe Depth Probe Depth Probe Depth Probe Depth
uber 16.43% 1.20 1 1 7
nell-2 26.45% 1.36 1 1 11
enron 37.53% 1.60 1 1 37
chicago 57.27% 25.95 2 1 28
nips 77.31% 4.41 4 4 29
lbnl 89.39% 9.43 1 1 2994

Table 3.2: Hashing statistics using the modified hash algorithm.

Collision Mean Median Mode Max
Tensor Rate Probe Depth Probe Depth Probe Depth Probe Depth
uber 17.17% 1.21 1 1 7
nell-2 23.87% 1.31 1 1 9
enron 17.74% 1.22 1 1 8
chicago 26.23% 1.36 1 1 8
nips 16.40% 1.20 1 1 7
lbnl 17.13% 1.21 1 1 7
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3.2 Implementation

In an effort to exploit HaCOO format within a familiar computational platform,

HaCOO format was implemented as a MATLAB class called htensor. The primary

goals for this library were to create and manipulate HaCOO format sparse tensors in

MATLAB and perform CP decomposition using sparse tensors in HaCOO format.

A HaCOO sparse tensor in the htensor MATLAB class contains a hash table,

represented as a cell array, with individual cells containing a matrix of index-value

tuples that have hashed into that bucket. Tensor elements that hash into an already

occupied bucket are concatenated vertically with the existing matrix. There are three

variations of class constructors. The single argument constructor can accept a COO

format .txt file or a nonzero scalar value to create a blank table with a specified

number of buckets. The two argument constructor accepts two arrays containing

tensor indexes with corresponding values and will return a populated HaCOO tensor.

The three argument constructor accepts the same parameters as the two argument

constructor, but with an additional third array of indexes which have already been

concatenated. If no parameters are specified, the default constructor creates an empty

hash table of an arbitrarily chosen size of 512. If the load factor threshold is met,

the table with automatically double in size and rehash all existing entries. Additional

functions required for CP-ALS decomposition were implemented by directly replacing

sections of code that referenced Tensor Toolbox’s sptensor class with htensor custom

functions.

The HaCOO htensor class includes the following functions:

set - Insert a nonzero entry in the hash table.

get - Retrieve a tensor index.

search - Search for an index entry in hash table.

extract val - Retrieve the value of tensor index.
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hash - Hash the index and return entry’s hash key.

rehash - Rehash existing entries to a new tensor of with a hash table double

the existing size.

all subsVals - Return all indexes and values in the tensor as separate arrays.

display htns - Display all sparse tensor indexes and values.

I/O functions to write, load, and save a HaCOO tensor to a .mat file.

nnzLoc - Return the indexes of nonempty hash table buckets.

htns mttkrp - Perform MTTKRP along a specified mode.

htns cp als - Perform CP decomposition using the Alternating Least Squares

method.

Currently, HaCOO’s borrows its MTTKRP implementation from version 3.3 of

Tensor Toolbox. Instead of retrieving indexes and values from a COO sptensor, all

indexes and values are extracted at once from a HaCOO htensor. The Tensor Toolbox

implementation was chosen to fully exploit MATLAB’s vectorized operations, since

methods that accumulate values using for loops resulted in far worse performance.

The remainder of the implementation was kept the same. Full details of this

formulation of MTTKRP can be found at [5]. All code for the HaCOO library is

accessible from its GitHub Repository [7]. Select class functions are provided in the

Appendix.

3.3 Storage

HaCOO’s hash table dominates the required storage of the entire HaCOO tensor,

as the additional fields only contain scalars. Assume a numeric value of desired

precision (single or double) takes βnum bytes, a cell array containing one numerical
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value takes βbucket bytes, and an empty cell array bucket consumes 0 bytes. Note that

MATLAB stores numbers as floating-point values with double precision if the type

is not specified, requiring 8 bytes, while the single type requires only 4 bytes [19]. A

load factor must be specified, which is the percentage of hash buckets that can be

occupied. Storing the hash table of a HaCOO sparse tensor X I1×...IN of order N with

M nonzeros would require

SHaCOO = load factor×M × βbucket ×N

bytes, while COO format would only require

SCOO = N ×M × βnum

.

While COO requires less storage, HaCOO’s constant time retrieval and insertion

makes up for the tradeoff of increased memory.
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Chapter 4

Evaluations

This chapter presents evaluation results for HaCOO and COO format using sev-

eral tensors from The Formidable Repository of Open Sparse Tensors and Tools

(FROSTT) [23]. Tensor characteristics and properties are detailed in Section 2.6.

All results are reported as an average over 10 trials.

4.1 Building FROSTT Tensors using HaCOO

Before evaluating the time required for both COO and HaCOO format’s ability to

insert new tensor entries, a few adjustments needed to be made. FROSTT’s tensors

are stored in COO format, presorted, and verified to contain no duplicate indices. To

provide a comparison of solely the insertion step between the two formats, all rows of

the original COO tensor were shuffled, then inserted one entry at a time, effectively

inserting a random element from that tensor. Due to time constraints, re-building

entire tensors in COO format was not possible, since time estimates indicated that

rebuilding one COO tensor could take several days. As a result, inserting increasingly

larger subsets of elements were tested. Results are presented as average wall-clock and

CPU time in seconds required to build COO and HaCOO tensors using MATLAB’s

native functions for measuring code performance [18], accumulating only the time for

element insertion. Wall-clock time was measured with MATLAB’s tic/toc and timeit
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functions, which return the elapsed time it took for the code to run. The cputime

function measures the total CPU time summed across all threads. MATLAB’s method

to measure CPU time can exceed wall-clock time in certain scenarios, such an example

being MATLAB using all processing cores equally. Results were obtained from an

Apple MacBook Pro with a 2.4 GHz Dual-Core Intel Core i5 processor with 128 GB

and 4 GB of 1600MHz DDR3L onboard memory [1].

Figures 4.1 and 4.2 present cumulative average wall-clock and CPU time for

inserting 100,000 random elements respectively for all sample FROSTT tensors.

HaCOO format began to consistently outperform COO once the number of elements

inserted reached 25,000. Inserting 100,000 random elements from the Uber tensor

using HaCOO format yielded around 91-93% reduction in both cumulative wall-clock

and CPU time compared to using COO format. Since increasingly larger intervals of

n were tested, Figure 4.3 provides a clearer insight into how the number of inserted

elements affected both formats, reporting the percent decrease in seconds required to

insert n random elements from the Uber tensor using HaCOO format versus COO

format. Note how a logarithmic trend line provided the best fit for the data. As

n grows, the time reduction from using HaCOO format appears to plateau as it

asymptotically reaches 100% reduction. This is expected behavior, since reaching

that amount of reduction is unfeasible, as that would mean it took no time at all to

construct the tensor in MATLAB.
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Figure 4.1: Average wall-clock time in seconds required to insert 100,000 random
elements using COO format compared to HaCOO format.

Figure 4.2: Average CPU time in seconds required to insert 100,000 random
elements using COO format compared to HaCOO format.
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Figure 4.3: Percent decrease in seconds required to insert n random elements from
the Uber tensor using HaCOO format compared to using COO format.
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4.2 MTTKRP

Figures 4.4 and 4.5 report average wall-clock and CPU time required to calculate

MTTRKP over all modes. The black data labels above the bars represent the average

time over all modes. The enron and nell-2 tensors were omitted from evaluations due

to MATLAB’s limited memory usage. While the MTTRKP calculation is identical for

both formats, there is a slight difference due to the time required to retrieve all tensor

elements from HaCOO’s hash table, which was implemented by indexing the table’s

nonempty cells, which act as buckets. On the other hand, this is a step that COO

format can completely bypass. On average, HaCOO’s current MTTRKP method

incurs a 26.78% increase in time. Out of the chosen datasets, the largest overhead

observed was calculating MTTKRP over mode 4 of the chicago tensor, which had

an 77.88% increase in time to complete. Despite this percent increase, the maximum

difference in elapsed time over any mode was slightly over 4 seconds.
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Figure 4.4: Average wall-clock time in seconds required to calculate MTTKRP over
all tensor modes using COO format compared to HaCOO format. The black data
labels above the bars indicate average time over all modes.

Figure 4.5: Average wall-clock time in seconds required to calculate MTTKRP over
all tensor modes using COO format compared to HaCOO format. The black data
labels above the bars indicate average time over all modes.
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Chapter 5

Modeling Textual Influence

Sparse tensor decomposition can also play a central role in text analysis. This chapter

focuses on the use of sparse tensors in Lowe’s Textual Influence model, originally

published in 2018. The model uses non-negative sparse tensor decomposition on

document tensors to discreetly quantify the amount of influence a collection, or

corpus, of written documents exerts on a target document.

A document tensor is built by counting the frequency of the document’s n-grams.

An n-gram is a contiguous sequence of words and is constructed using a sliding

window, shown in Figure 5.1 [17]. Each word in the n-gram corresponds to a unique

index in a vocabulary list V , which contains all unique words in the corpus and is

consecutively indexed. Thus, the frequency of the phrase ViVjVk in a document

is represented as entry Di,j,k in its respective document tensor. Pseudocode for

building a document tensor is shown in Algorithm 5. This process is repeated for

each document in the corpus. It follows that the size of the vocabulary V , drives the

dimensions of a document tensor, since each document tensor must account for any

combination of n words. However, since only specific combinations of n-words hold

any semantic meaning, the final document tensor is very sparse. For instance,
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Figure 5.1: Counting n-grams using a sliding window, where n is set to 3.

Algorithm 5: Building a document tensor [17].

Input: text document d, length of n-gram n, vocabulary list V
Output: tensor D

1 D = Tensor with dimension |V | × |V | × · · · ×n |V |
2 len = number of words in d
3 for i = 1 to len do
4 /* Compute tensor element index */
5 for j = 1 to n do
6 index[j ] = index of word d[i ] in V
7 end
8 /* Update frequency of this n-gram */
9 D [index] = D [index] + 1

10 end
11 return D
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a document tensor for the story in Figure 5.2 could potentially have a nonzero entry

for the n-gram “on then cat”. However, this combination of words would likely not

occur together, since it holds no semantic meaning. If the phrase did not occur in

the document, its corresponding tensor entry would have a value of zero. Since the

number of potential phrases that do not occur far outweigh the number of phrases

that do occur, document tensors tend to be sparse.

After building and decomposing all document tensors, the factors yielded by non-

negative CP decomposition are reassembled, then L1 distances between all factors

are calculated and stored as a matrix. Finally, each factor in the target document is

assigned the closest factor, given it meets a certain threshold, indicating the amount

of influence that factor exerted on that document. Since this part of the model is not

affected by tensor storage format, we will only focus on building and decomposing

document tensors. A full discussion can be found in [17].

5.1 A Small Example

To illustrate the process of building a document tensor, this section covers a trivial

example. A sample document is provided in Figure 5.2 and a corresponding indexed

vocabulary of unique words is shown in Table 5.1. By referencing this vocabulary,

we can build indexes for all n-grams in the document, shown in Table 5.2. Table 5.3

represents the document from Figure 5.2 in COO format. Since none of the n-grams

occurred more than once, all values representing an n-gram’s frequency are assigned

a value of one.

5.2 Building Document Tensors in MATLAB

To evaluate the HaCOO MATLAB class, a script was required to build the document

tensors. A number of optional parameters can be specified, including n-gram size,

vocabulary size (the default set to 104), and an option to save the vocabulary to a
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The cat jumped on the couch. He yawned and stretched. Then he fell asleep.

Figure 5.2: Sample short story document.

Table 5.1: Extract vocabulary V consisting of all unique words in the corpus.

1 the 7 yawned
2 cat 8 and
3 jumped 9 stretched
4 on 10 then
5 couch 11 fell
6 he 12 asleep

Table 5.2: List of n-grams with corresponding indices.

1, 2, 3 the cat jumped 6, 7, 8 he yawned and
2, 3, 4 cat jumped on 7, 8, 9 yawned and stretched
3, 4, 1 jumped on the 8, 9, 10 and stretched then
4, 1, 5 on the couch 9, 10, 6 stretched then he
1, 5, 6 the couch he 10, 6, 11 then he fell
5, 6, 7 couch he yawned 6, 11, 12 he fell asleep

Table 5.3: Document tensor in unsorted COO format.

i j k value
1 2 3 1
2 3 4 1
3 4 1 1
4 1 5 1
1 5 6 1
5 6 7 1
6 7 8 1
7 8 9 1
8 9 10 1
10 6 11 1
6 11 12 1
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file. The script creates document tensors from all .txt files in the current directory.

For each document, the script disregards all numbers and punctuation and converts

all words to lowercase. Punctuation is filtered out using MATLAB’s Text Analytics

Toolbox [20]. All unique words are stored in a MATLAB Map, a container that maps

unique keys to values [27]. This Map is sorted in descending order by frequency,

and consecutively indexed. In cases where a constrained vocabulary is desired, this

list can be truncated to a specific length. Individual tensor entries are built using

a sliding window to locate an n-gram, referencing the Map for each word’s index,

and are combined to create the full tensor index. This entry is then inserted into a

sparse tensor. The window then advances by one word until we have exhausted all

possible n-grams, where we must stop n words from the end of the document. To

avoid rehashing in HaCOO format, the initial number of buckets was specified to be

1,048,576, or 220. The full script can be found in the Appendix.

5.3 Datasets

Two collections of documents were tested. The smaller corpus was mentioned in [17],

which we will call the Conference corpus. The collection consists of five reports on

the topic of handwritten digit recognition with an additional two papers discussing

unrelated topics, totaling 45,152 words with a 5,236-word vocabulary. The second

corpus consists of seven works by William Shakespeare, which we will refer to as the

Shakespeare corpus, totaling 181,760 words with a 15,203-word vocabulary. Works

were obtained from the Project Gutenberg website [2]. Tables 5.4 and 5.5 provide a

complete list of documents for both corpuses.
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Table 5.4: Documents in the Conference corpus.

Num Document Information

1
Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A
symbolic representation of time series, with implications for
streaming algorithms. In Proc. DMKD 2003, pages 211. ACM Press, 2003.

2
Andreas Schlapbach and Horst Bunke. Using hmm
based recognizers for writer identifcation and
verifcation. In Proc. FHR 2004, pages 167172. IEEE, 2004.

3
Yusuke Manabe and Basabi Chakraborty. Identity
detection from on-line handwriting time series. In Proc.
SMCia 2008, pages 365370. IEEE, 2008.

4

Sami Gazzah and Najoua Ben Amara. Arabic
handwriting texture analysis for writer identifcation
using the dwt-lifting scheme. In Proc. ICDAR 2007,
pages 11331137. IEEE, 2007.

5
Kolda, Tamara Gibson. Multilinear operators for higher-order
decompositions. 2006

6
Blei, David M and Ng, Andrew Y and Jordan, Michael I. Latent
dirichlet allocation. 2007

7
Serfas, Doug. Dynamic Biometric Recognition of Handwritten Digits
Using Symbolic Aggregate Approximation. Proceedings of the ACM
Southeast Conference 2017
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Table 5.5: Documents in the Shakespeare corpus.

Num Document Information

1
“Hamlet, Prince of Denmark by William Shakespeare.”
Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1524.
Accessed 10 July 2023.

2
“Julius Caesar by William Shakespeare.”
Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1522.
Accessed 10 July 2023. ‌

3
“Macbeth by William Shakespeare.”
Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1533.
Accessed 10 July 2023. ‌

4
“A Midsummer Night’s Dream by William Shakespeare.”
Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1514.
Accessed 10 July 2023. ‌

5
“Othello, the Moor of Venice by William Shakespeare.”
Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1531.
Accessed 10 July 2023. ‌

6
“The Tragedy of Romeo and Juliet by William Shakespeare.”
Project Gutenberg, Nov. 1997, www.gutenberg.org/ebooks/1112.
Accessed 10 July 2023. ‌

7
“Twelfth Night; Or, What You Will by William Shakespeare.”
Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1526.
Accessed 10 July 2023. ‌
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Figures 5.3 and 5.4 present wall-clock time and CPU time in seconds to build all

document tensors in the Conference corpus in HaCOO and COO format, then use

their respective CP-ALS method to decompose all document tensors. Reported times

are an average over 10 trials. Note that during the tensor building stage, reported

wall-clock and CPU time only considers the time required to insert elements into

the document tensors. The n-gram size was set to three and 50 components were

specified while invoking the CP-ALS method. Document tensors were built using

both constrained and unconstrained vocabularies to observe how vocabulary growth

affected element insertion time. The constrained case limited the corpus vocabulary

to the 600 most frequent words, and the unconstrained vocabulary accounted for all

unique words in the corpus. Results indicated around 44-49% reduction in both wall-

clock and CPU time from using HaCOO format as opposed to COO format for both

the constrained and unconstrained cases.

Figures 5.5 and 5.6 present average wall-clock and CPU required to build and

decompose all document tensors into 50 components for the Shakespeare corpus using

the CP-ALS method. Since this corpus had a far larger word and vocabulary count, a

more substantial difference was observed between the two formats. The constrained

case yielded in around a 14% decrease in wall-clock time, while the unconstrained

case yielded around a 72% decrease. With regard to CPU time, around 32% and 78%

decrease was observed for the constrained and unconstrained case, respectively.
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Figure 5.3: Average wall-clock time required to build and decompose all document
tensors using CP-ALS for the Conference Corpus using COO format compared to
HaCOO format.

Figure 5.4: Average CPU time required to build and decompose all document
tensors using CP-ALS for the Conference Corpus using COO format compared to
HaCOO format.
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Figure 5.5: Average wall-clock time required to build and decompose all document
tensors using CP-ALS for the Shakespeare Corpus using COO format compared to
HaCOO format.

Figure 5.6: Average CPU time required to build and decompose all document
tensors using CP-ALS for the Shakespeare Corpus using COO format compared
HaCOO format.
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Chapter 6

Conclusions

This work has presented evidence that supports HaCOO as a viable format for sparse

tensor storage. HaCOO’s support of constant time tensor updates and retrieval is

a notable shift from previous formats. HaCOO format trades additional storage

requirements for ensuring that time to search, insert, or retrieve tensor indexes does

not grow due to larger tensor dimensions, which is a feature lacking from most

common formats, such as standard COO, as well as the current state-of-the-art,

ALTO. Additionally, HaCOO has the ability to modify an already existing sparse

tensor data structure on the fly, in constant time.

Compared to Tensor Toolbox, HaCOO’s MATLAB implementation outperformed

standard COO format in terms of tensor updates once the number of elements

reached a specific threshold. Performance with regard to tensor decomposition using

the CP-ALS method was comparable, due to the MTTRKP operation incurring

a small amount of overhead from extracting tensor elements from HaCOO’s hash

table. Furthermore, realizing HaCOO format in MATLAB provides easy accessibility

to sparse tensor analysis without any additional requisite computing equipment.

A modified HaCOO hash function was also proposed, consistently achieving lower

collision rates as well as reducing the maximum chain length. The modified hash
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function reduced the largest collision rate from 89.39% to 25.95% while maintaining

an average probe depth of 1.

6.1 Future Research

Since HaCOO is still a fairly recent format, there are a number of tasks that

can further expand the HaCOO MATLAB class and take advantage of HaCOO

format’s utility. The MATLAB HaCOO htensor class is missing some common tensor

arithmetic functions such as tensor addition, subtraction, and so on. Additional code

clean-up is necessary to make usage conventions consistent with Tensor Toolbox. It

would also be beneficial to identify specific properties of sparse tensors that are best

suited for HaCOO format. Preliminary evaluations suggest that tensors with a higher

number of dense fibers increase the probability of hash collisions. An exact profiling

would be helpful in determining what sparse tensor properties result in increased or

decreased collision rates. Additional modifications to the hash algorithm can aid in

further decreasing the rate of hash collisions.
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Appendix

MATLAB HaCOO Class Declaration

1 % HACOO class for sparse tensor storage.

2

3 classdef htensor

4 properties

5 table %hash table

6 nbuckets %number of slots in hash table

7 modes %modes list

8 nmodes %number of modes

9 bits

10 sx

11 sy

12 sz

13 mask

14 max_chain_depth

15 %number of elements in the hash table

16 hash_curr_size

17 %percent of the table that can be filled before

rehashing

18 load_factor

51



19 end

20 methods

21

22 %{

23 HACOO Create a sparse tensor using HaCOO storage.

24 Parameters:

25 1 argument construtors:

26 file - Load a .mat file with a HaCOO tensor

27 that has been created using write_htns()

function.

28 nbuckets - create a HaCOO tensor with a

specified number of buckets

29 OR

30 2 argument constructors:

31 subs - array of nonzero tensor subscripts

32 vals - array of nonzero values

33 OR

34 subs - array of nonzero tensor subscripts

35 vals - array of nonzero values

36 concatIdx - array of concatenated indexes

37 %}

38

39 function t = htensor(varargin) %<-- Class constructor

40

41 t.hash_curr_size = 0;

42 t.load_factor = 0.6;

43

44 switch nargin
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45

46 case 1

47 % if number of buckets is specified

48 if isscalar(varargin {1})

49 t.modes = [];

50 t.nmodes = 0;

51 t = hash_init(t,varargin {1});

52

53 % else load from .mat file

54 elseif isstring(varargin {1})

55 loaded = matfile(varargin {1});

56 t = loaded.t;

57 end

58 case 2 % subs and vals specified as arg1 and arg2.

59

60 idx = varargin {1};

61 vals = varargin {2};

62

63 % concatenate indexes

64 T = arrayfun (@string ,idx);

65 X = strcat(T(:,1),'',T(:,2));

66

67 for i=3: size(T,2)

68 X= strcat(X(:,:),'',T(:,i));

69 end

70

71 concatIdx = arrayfun (@str2double ,X);

72
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73 t.modes = max(idx);

74 t.nmodes = length(t.modes);

75

76 nnz = size(idx ,1);

77 reqSize = power(2,ceil(log2(nnz/t.load_factor)

));

78 NBUCKETS = max(reqSize ,512);

79

80 % Initialize all hash table related things

81 t = hash_init(t,NBUCKETS);

82 t = t.init_table(idx ,vals ,concatIdx);

83

84 case 3

85 idx = varargin {1};

86 vals = varargin {2};

87 concatIdx = varargin {3};

88

89 t.modes = max(idx);

90 t.nmodes = length(t.modes);

91

92 nnz = size(idx ,1);

93 reqSize = power(2,ceil(log2(nnz/t.load_factor)

));

94 NBUCKETS = max(reqSize ,512);

95

96 % Initialize all hash table related things

97 t = hash_init(t,NBUCKETS);

98 t = t.init_table(idx ,vals ,concatIdx);
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99

100 otherwise

101 t.modes = []; %<-- EMPTY class constructor

102 t.nmodes = 0;

103 NBUCKETS = 512;

104 t = hash_init(t,NBUCKETS);

105 end

106 end

Hash Function

1 %{

2 Hash the index and return the key.

3

4 Parameters:

5 t - The sparse tensor

6 m - Concatenated index

7 Returns:

8 k - hash key

9 %}

10 function k = hash(t, m)

11 hash = m;

12 %bit shift to the left

13 hash = hash + (bitshift(hash ,t.sx));

14 %bit shift to the right

15 hash = bitxor(hash , bitshift(hash ,-t.sy));

16 %bit shift to the left

17 hash = hash + (bitshift(hash ,t.sz));
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18 k = mod(hash ,t.nbuckets);

19 end

Search Function

1 %{

2 Search for an index entry in hash table.

3 Parameters:

4 idx - The nonzero index to search for

5 Optional:

6 concatIdx - If you already have the concatenated

version of the index , hash using that.

7 Returns:

8 If m is found , it returns the (k, i) tuple where k is

the bucket and i is its location in the chain (the

row it's located in)

9 If m is not found , return (k, -1).

10 %}

11 function [k,i] = search(t, idx ,varargin)

12 % Set parameters from input or by using defaults

13 params = inputParser;

14 params.addParameter('concatIdx ',-1,@isscalar);

15 params.parse(varargin {:});

16

17 % Copy from params object

18 concatIdx = params.Results.concatIdx;

19
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20 % Check if idx is a concatenated index or inividual

index components

21 if concatIdx ~= -1

22 % Cass the concatenated index to hash function

23 k = t.hash(concatIdx);

24 else

25 % Concatenate the index

26 s = num2str(idx);

27 s = strrep(s,' ','');

28 s = str2double(s);

29 k = t.hash(s);

30 end

31

32 %ensure there are no keys equal to 0

33 if k <= 0

34 k = 1;

35 end

36

37 % Check if there are no entries in that bucket

38 if isempty(t.table{k})

39 i = -1;

40 return

41 else

42 % Attempt to find item in that bubcket 's chain

43 for i = 1:size(t.table{k},1)

44 if t.table{k}(i,1:end -1) == idx

45 return

46 end
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47 end

48 end

49 i = -1;

50 end

Set Function

1 %{

2 Function to insert a nonzero entry in the hash table.

3 Parameters:

4 t - The hacoo sparse tensor

5 idx - The nonzero index array

6 v - The nonzero value

7 Optionally -

8 update - If index already exists , update its

existing value by v

9 concatIdx - If you have already concatenated the

index , then you can pass it to save the time

required to convert it.

10 Returns:

11 t - the updated tensor

12 %}

13 function t = set(t,idx ,v,varargin)

14 % Set parameters from input or by using defaults

15 params = inputParser;

16 params.addParameter('update ',0,@isscalar);

17 params.addParameter('concatIdx ',-1,@isscalar);

18 params.parse(varargin {:});
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19

20 % Copy from params object

21 update = params.Results.update;

22 concatIdx = params.Results.concatIdx;

23

24 % Build the modes if we need to

25 if t.nmodes == 0

26 t.modes = zeros(length(idx));

27 t.nmodes = length(idx);

28 end

29

30 % Update any mode maxes as needed

31 for m = 1:t.nmodes

32 if t.modes(m) < idx(m)

33 t.modes(m) = idx(m);

34 end

35 end

36

37 if concatIdx ~= -1

38 % If a concatenated index got passed , search using

that

39 [k, i] = t.search(idx ,'concatIdx ',concatIdx);

40 else

41 % try to find the index

42 [k, i] = t.search(idx);

43 end

44

45 % Insert accordingly
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46 if i == -1

47 if v ~= 0

48 if isempty(t.table{k})

49 t.table{k} = [idx v];

50 else

51 % If not empty , append to the end of

existing entries

52 t.table{k} = vertcat(t.table{k},[idx v]);

53 end

54 t.hash_curr_size = t.hash_curr_size + 1;

55 depth = size(t.table{k},1);

56 if depth > t.max_chain_depth

57 t.max_chain_depth = depth;

58 end

59 end

60 elseif update

61 t.table{k}(i,end) = t.table{k}(i,end) + v;

62 else

63 fprintf (" Cannot set entry.\n");

64 return

65 end

66

67 % Check if we need to rehash

68 if((t.hash_curr_size/t.nbuckets) > t.load_factor)

69 t = t.rehash ();

70 end

71 end
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Retrieve all tensor entries

1 %{

2 Retrieve all indexes and vals from a HaCOO sparse tensor.

3 Parameters:

4 t - HaCOO htensor

5 Returns:

6 subs - array of all indexes in HaCOO tensor t

7 vals - array of all values in HaCOO tensor t

8 %}

9

10 function [subs ,vals] = all_subsVals(t)

11 nnz = t.table(nnzLoc(t));

12 A = vertcat(nnz{1:end ,:});

13 subs = A(:,1:end -1);

14 vals = A(:,end);

15 end
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Textual Influence Modeling

Script to build vocabulary list

1 %{

2 File: build_vocab.m

3 Purpose: Create an indexed vocabulary to build document

tensors. Requires MATLAB Text Analytics Toolbox.

4

5 Parameters:

6 vocabFile - save vocabulary file

7 freqFile - save frequency file

8 constraint - limit vocabulary to the n most frequent

words

9

10 Returns:

11 N - number of documents

12 words - array of unique words in the corpus

13 wordToIndex - indexed vocabulary for the corpus

14 newFileNames - file names for saving document tensors

to files

15 %}

16
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17 function [N,words ,wordToIndex ,newFileNames] = build_vocab(

varargin)

18 %% Set up params

19 params = inputParser;

20 params.addParameter('vocabFile ','vocabulary ',@isstring);

21 params.addParameter('freqFile ','@',@isstring);

22 params.addParameter('constraint ' ,10e4 ,@ isscalar);

23 params.parse(varargin {:});

24

25 %% Copy from params object

26 vocabFile = params.Results.vocabFile;

27 freqFile = params.Results.freqFile;

28 constraint = params.Results.constraint;

29 %%

30

31 files = dir('*.TXT');

32 N = numel(files);

33 newFileNames = cell(N,1);

34 words = cell(N, 1);

35

36 for i = 1: length(files)

37 fid1 = files(i).name;

38 newFileNames{i} = replace(fid1 ,'.txt','_coo.txt');

39 fidI = fopen(files(i).name ,'r');

40 temp = textscan(fidI , '%s');

41 %requires MATLAB Text Analytics Toolbox

42 temp {1} = erasePunctuation(temp {1});

43 docWords = {};
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44 for j=1: length(temp {1})

45 lowerCase = lower(temp {1});

46 if all(isstrprop(lowerCase{j},'alpha '))

47 docWords{end +1} = lowerCase{j};

48 end

49 end

50 words{i} = transpose(docWords);

51 end

52

53 % Build raw vocabulary dictionary

54 vocab = containers.Map;

55 for doc=1:N %for every doc

56 for i=1: length(words{doc}) %for every word in a doc

57 word = words{doc}{i};

58 if ~isKey(vocab ,word) %if word is not in voacb ,

add it

59 vocab(word) = 1;

60 else

61 vocab(word) = vocab(word) + 1;

62 end

63 end

64 end

65

66 %Sort by frequency in descending order

67 keys = vocab.keys;

68 mvals = cell2mat(vocab.values);

69 [vocabVals , sortIdx] = sort(mvals ,'descend ');

70 vocabKeys = keys(sortIdx);
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71

72 if constraint > 0 && constraint < length(keys)

73 % count the other

74 other = 0;

75 for word=constraint +1: size(vocab ,1)

76 other = other + vocabVals(word);

77 end

78

79 % trim the list

80 vocabKeys = vocabKeys (1: constraint);

81 vocabVals = vocabVals (1: constraint);

82 vocabKeys{end+1} = '<other >';

83 vocabVals(end+1) = other;

84 end

85

86 % index the vocabulary

87 vocabIndex = 1: length(vocabKeys);

88

89 %Save the vocabulary

90 fileID = fopen(vocabFile ,'w');

91 for i=1: length(vocabKeys)

92 fprintf(fileID ,'%s %d\n',vocabKeys{i},vocabIndex(i));

93 end

94 fclose(fileID);

95

96 % optionally save the frequency file

97 if freqFile ~= '@'

98 fileID = fopen(freqFile ,'w');
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99 for i=1: length(vocabKeys)

100 fprintf(fileID ,'%s %d\n',vocabKeys{i},vocabVals(i)

);

101 end

102 fclose(fileID);

103 end

104

105 % construct the word lookup

106 wordToIndex = containers.Map(vocabKeys ,vocabIndex);

107 end

Build document tensors

1 %{

2 File: doctns.m

3 Purpose: Build list of document tensors.

4

5 Parameters:

6 N - number of documents

7 words - array of unique words in entire corpus

8 wordToIndex - indexed vocabulary for entire corpus

9 newFileNames - file names for saving document tensors

as .mat files

10 tns_format - which tensor format to use (sptensor or

htensor)

11 ngram - set the number of consecutive words when

building tensor

12 mat_save - write document tensors as HaCOO .mat files
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13 coo_save - write document tensors as COO .txt files

14

15 Returns:

16 tnsList - cell array of built HaCOO or COO tensors for

each document in current directory

17 %}

18

19 function tnsList = doctns(N,words ,wordToIndex ,newFileNames

,varargin)

20 params = inputParser;

21 params.addParameter('format ','default ',@isstring);

22 params.addParameter('ngram ',3,@isscalar);

23 params.addParameter('hacoo_save ',0,@isscalar);

24 params.addParameter('coo_save ',0,@isscalar);

25 params.parse(varargin {:});

26

27 %% Copy from params object

28 format = params.Results.format;

29 ngram = params.Results.ngram;

30 hacoo_save = params.Results.hacoo_save;

31 coo_save = params.Results.coo_save;

32

33 %Check if tensor format is valid

34 if strcmp(format ," sptensor ") || strcmp(format ,"coo")

35 fmtNum = 1;

36 elseif strcmp(format ," htensor ") || strcmp(format ," hacoo")

37 fmtNum = 2;

38 else
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39 fprintf (" Tensor format invalid .\n");

40 return

41 end

42

43 tnsList = cell(N,1); %blank cell array to store document

tensors

44

45 % construct the document tensors

46 for doc=1:N %for every doc

47 %If using HaCOO format

48 if fmtNum == 2

49 tns = htensor ();

50 elseif fmtNum == 1 %else use COO format

51 tns = sptensor(ones(1,ngram));

52 end

53

54 curr_doc = words{doc}; %word list for current doc

55 i = 1;

56 limit = length(curr_doc) - ngram;

57 idxList = zeros(limit ,ngram);

58 % count the ngrams

59 while i < limit+2

60 gram = curr_doc(i:i+ngram -1);

61 idx = zeros(1,ngram);

62

63 % build the index

64 for w=1: length(gram)

65 word = gram{w};
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66 if ~isKey(wordToIndex ,word)

67 word = '<other >';

68 end

69 idx(w) = wordToIndex(word);

70 end

71

72 %store the index

73 idxList(i,:) = idx;

74 % next word

75 i = i+1;

76 end

77

78 %concatenate the indexes for HaCOO

79 T = arrayfun (@string ,idxList);

80

81 %apply to each row

82 X = strcat(T(:,1),'',T(:,2)); %To start the new array

83

84 for i=3: size(T,2)

85 X= strcat(X(:,:),'',T(:,i));

86 end

87

88 concatIdx = arrayfun (@str2double ,X);

89

90 %insert elements

91 for i=1: size(idxList ,1)

92 %If using HaCOO format

93 if fmtNum == 2
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94 tns = tns.set(idxList(i,:) ,1,'update ',1,'

concatIdx ',concatIdx(i));

95

96 %If using COO format

97 elseif fmtNum == 1

98 %Check if this index is larger than the

sptensor size

99 updateModes = idxList(i,:) > size(tns);

100

101 if any(updateModes) %if any index modes are

larger , just insert

102 tns(idxList(i,:)) = 1;

103 else

104 %update the entry 's val

105 tns(idxList(i,:)) = tns(idxList(i,:)) + 1;

106 end

107 end

108 end

109

110 if fmtNum ==2

111 %update the locations of occupied buckets

112 tns = tns.init_nnzLoc ();

113 end

114 %store the tensor & advance to the next document

115 tnsList{doc} = tns;

116

117 %----------

118 if hacoo_save
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119 % write the file

120 fileID = newFileNames{doc};

121 write_htns(tns ,fileID ,'-v7.3');

122 end

123

124 if coo_save

125 fileID = newFileNames{doc};

126 write_coo(tns ,fileID);

127 end

128 %--------

129 end

130

131

132 end %<-- end function
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