
Hashed Coordinate Sparse Tensor
Storage with MATLAB

MeiLi Charles
Advisor: Michael Berry

Outline
1. Background and Motivation

2. Existing Storage Formats

3. Hashed Coordinate (HaCOO) format

4. Evaluation

5. Textual Analysis Application

6. Conclusions and Future Goals

7. Q&A

Motivation
• Many important application domains produce and manipulate
massive amounts of high-dimensional data

• This data can also be sparse

Source: Laukemann, 2021

Motivation
● For sparse tensors, we want to reduce storage requirements and

eliminate meaningless computations on 0 values.

• Challenge: How do we effectively store and compute using high
dimensional data?

Background
• A tensor is an n-way array

• Each way is referred to as a
mode

• The number of modes
determines a tensor’s order

A third-order tensor

Source: [4]

Background

Background

Background
• A tensor can be unfolded, or matricized along any of its modes

• is a matricized tensor unfolded along the nth mode and is
composed of mode-n fibers.

Background

Frontal slices:

Background

Background
The Kronecker product of matrices and is denoted
by , which results in a (IJ) x (KL) matrix:

Background
The Khatri-Rao product is defined in terms of the Kronecker product.
The Khatri-Rao product of matrices and is denoted by

 , where the resulting matrix is (IM) x J.

Canonical Polyadic Decomposition (CPD)
• Goal: approximate a mode-N tensor X as the sum of R rank-1 tensors

Data Low-Rank Model

Canonical Polyadic Decomposition (CPD)
• An n-way tensor is rank-1 if it can be written as the outer product of n
vectors

Canonical Polyadic Decomposition (CPD)
For the 3-way case…
• Given 3 vectors:

• Their outer product is:

• Each entry is given by:

Canonical Polyadic Decomposition (CPD)

Let be a three-way tensor.

Compute a CP decomposition with R components that best
approximates , i.e., to find:

Factor matrices

Canonical Polyadic Decomposition (CPD)
Decompose 3-way tensor into 3 factor matrices:

The following produces approximate matricizations of the original tensor:

Canonical Polyadic Decomposition (CPD)

To compute CP, we will use the Alternating Least Squares (ALS)
method.

Method:
● Fix matrix B and C and solve for matrix A
● Fix A and C to solve for B
● Fix A and B to solve for C

Canonical Polyadic Decomposition (CPD)
For example:

Matrices B and C are fixed, solve for A.

• The optimal solution is given by:

Canonical Polyadic Decomposition (CPD)

• The following form is preferred:

• Only need to calculate the pseudoinverse of an R x R matrix,
instead of a (JK) x R matrix

Canonical Polyadic Decomposition (CPD)
CP-ALS:

repeat

until maximum number of iterations are reached or error less than ε
end

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

MTTKRP

Source: [11]

• Retrieved from FROSTT, Formidable Repository of Open Sparse
Tensors and Tools

• Publicly available collection of sparse tensor datasets to facilitate
reproducible results

Datasets

Source: [10]

• Uber tensor: data on Uber pickups in New York City

• NELL-2 tensor: a smaller version of NELL-1, which is pulled from
the Never Ending Language Learner knowledge base, part of a
machine learning project from Carnegie Mellon University.

• Enron tensor: email data that was publicly released during an
investigation by the Federal Energy Regulatory Commission

Datasets

• Chicago tensor: crime reports in the city of Chicago

• Nips tensor: publications from the NeurIPS Conference on Neural
Information Processing Systems.

• LBNL tensor: anonymized internal network traffic from Lawrence
Berkeley National Laboratory (LBNL).

Datasets

Datasets

Sparse Tensor Storage Formats
• Can be roughly grouped into list, block, or tree structures
• Dates range from 2009-2021

•Coordinate (COO) format

— Kolda and Bader, 2009
— Stores elements in a list
— “Standard” sparse tensor storage format
— Sorted or unsorted

Sparse Tensor Storage Formats

Source: [4]

•Compressed Sparse Fiber (CSF)
format
— Smith and Karypis, 2015
— Tree-based format
— Mode-specific

SPLATT

(The Surprisingly ParalleL spArse Tensor
Toolkit)

Sparse Tensor Storage Formats

Source: [11]

•Hierarchical Coordinate
(HiCOO) format
— Li et al., 2018
— Block-based format
— Smaller space to search within

blocks
— Smaller indices means less bits

to store
ParTI!
(A Parallel Tensor Infrastructure!)

Source: [5]

Sparse Tensor Storage Formats

•Adaptive Linearized Storage of
Sparse Tensors (ALTO)
— Helal et. al, 2021
— Uses bit encoding to order

indexes along a line
ALTO library

Source: [3]

Sparse Tensor Storage Formats

Why another format?
• Many existing formats:
— rely on spatial locality of non-zero elements (HiCOO, CSF)

— do not have a method to insert new tensor values (ALTO, CSF, HiCOO)

Why MATLAB?
• Tensor Toolbox
• Common application that is easily accessible

Source: [12]

Hashed Coordinate Format (HaCOO)
•Developed by Robert Lowe, et. al. (2021)

•Separate chaining hash table to store tensor indices and values
— Uses a low-collision hash function to map indexes into slots within the table
— Amortized O(1) insertion, update, and retrieval

Source: [7]

HaCOO format

Hashed Coordinate Format (HaCOO)
•Determine hash values

Hashed Coordinate Format (HaCOO)
• Jenkins One-at-a-Time Hash

Hashed Coordinate Format (HaCOO)
Example:

Hashed Coordinate Format (HaCOO)

Hashing statistics using the original hash function.

Modified Hashing
•Can the hash function be improved?

•Original algorithm:
— convert tensor index to Morton code, apply Jenkins hash

• Modified algorithm:
— concatenate the tensor index, apply Jenkins hash

Modified Hashing

Results using the modified hash.

HaCOO MATLAB Class
• Create, manipulate, and perform CP decomposition on HaCOO

format tensors

• The htensor class:
— hash table, represented as a cell array
— individual cells contain a matrix of index-value tuples that have hashed into

that bucket
— locations of non-empty buckets
— modes, number of nonzero elements, maximum chain length, hash

parameters, etc.

HaCOO MATLAB Class

• Methods to set/get/search for a tensor index, extract all
indexes/values, rehash

• Various class constructors:
— create a blank HaCOO tensor
— create a HaCOO tensor from COO tensor or text file

Additional functions to read and write HaCOO tensors from a .mat file.

Evaluations
• How do we evaluate HaCOO vs COO in MATLAB?

• Method: simulate “online updates” by inserting elements

• FROSTT tensors are in COO format, pre-sorted and verified to have
no duplicate entries

Solution: randomly shuffle the rows of the COO tensor and insert
nonzeros one at a time

• Accumulate the time required to insert an element
• Compare wall-clock and CPU time

Building a new COO tensor took days!
• Limit the number of inserted elements to the first n entries

Evaluations

Evaluations
Setup:

• Apple MacBook Pro (late 2013)
• 2.4 GHz Dual-Core Intel Core i5 processor
• 128 GB and 4 GB of 1600MHz DDR3L onboard memory

MATLAB functions:
• tic/toc to measure elapsed time
• cputime to measure total CPU time (summed across threads)

Reported times are averaged over 10 trials

Source: [8],[9]

Updating FROSTT Tensors
• HaCOO format began to consistently outperform COO once the

number of elements inserted reached 25,000.

• Inserting 100,000 random elements from the Uber tensor using
HaCOO format yielded around 91-93% reduction in both cumulative
wall-clock and CPU time compared to COO format

Updating FROSTT Tensors

Updating FROSTT Tensors

Updating FROSTT Tensors

Updating FROSTT Tensors

Evaluations

• MTTRKP is typically the main bottleneck of CP decomposition

• HaCOO method:
— extract all elements from nonempty cells from the hash table

• Time and report averages to compute MTTKRP over every mode

Evaluations - MTTRKP

• On average, HaCOO’s current MTTRKP method incurs around
26.78% increase in time

• Largest increase observed was over mode 4 of the Chicago tensor
— 77.88% increase in time to complete
— Maximum difference in elapsed time over any mode was slightly over 4

seconds

Evaluations - MTTRKP

Text Analysis Application
• Textual Influence model by Lowe (2018)
• Goal:

— Use sparse tensor decomposition to measure the weight of influence a
written document exerts on a target work

First step is to convert all documents into tensors.

Source: [6]

Representing Documents as Tensors
Sample document:

Index vocabulary:

Representing Documents as Tensors

Counting n-grams using a sliding window

Representing Documents as Tensors

List of n-grams with corresponding indices

Representing Documents as Tensors
• Unsorted document

tensor

• None of the n-grams
repeated, so values
are 1

• Not all possible
n-grams will appear,
so these tensors are
sparse

HaCOO vs COO
• A document tensor’s modes grows with the size of the vocabulary

— COO must spend an increasing amount of time searching if the
n-gram/index already exists

— Additional time to do an in-order insert

• HaCOO can spend a constant amount of time to insert

Conference Corpus
5 papers on handwritten digit
recognition
2 papers on unrelated topics

45,152 words total
5,236 unique words

Shakespeare Corpus
7 works by William Shakespeare

181,760 words total
15,203 unique words

Setup
MATLAB scripts to build a vocabulary and build document tensors
(Appendix B)

Time how long to build and decompose all document tensors using
CP-ALS (50 components)

— constrained and unconstrained vocabularies

HaCOO: Initial number of buckets was specified to be 1,048,576, or 220

Results
• Conference corpus

— 44-49% reduction in both wall-clock and CPU time for both the constrained
and unconstrained cases

• Shakespeare corpus
— Constrained:

• ~14% decrease in wall-clock time
• ~32% decrease in CPU time

— Unconstrained:
• ~72% decrease in wall-clock time
• ~78% decrease in CPU time

Results - Conference Corpus

Results - Conference Corpus

Results - Shakespeare Corpus

Results - Shakespeare Corpus

Conclusions
• How to store large, sparse, high-dimensional data?
• Many common sparse tensor storage formats do not allow tensor
updates

• HaCOO format benefits:
— constant time insertion and retrieval

— MATLAB class to interface with Tensor Toolbox for additional tensor
operations without requiring additional hardware or environment setup

Conclusions

• HaCOO outperformed COO format in terms of tensor updates once
the number of elements reached a specific threshold.

• CP-ALS was comparable, due to HaCOO’s MTTRKP operation
incurs a small amount of overhead from extracting tensor elements
from the hash table

Future Goals
• MATLAB code clean-up

• What tensor properties contribute to a higher collision rate?

• Further improve hash function

• Workshop on Sparse Tensor Computations
— University of Illinois Urbana-Champaign

— October 2023

• Journal article to ACM-TOMS

Thank you for your time!

Q&A

References
1. Choi, Jee, et al. “Blocking Optimization Strategies for Sparse Tensor

Computation.” SIAM, July 2017,
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://users.wfu.edu/balla
rd/SIAM-AN17/choi.pdf.

2. Hastad, J. (1990). Tensor rank is np-complete. Journal of Algorithms,
11(4):644-654.

3. Helal, et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. June 2021,
https://doi.org/10.1145/3447818.3461703. Accessed 19 July 2023.

4. Kolda, Tamara G., and Brett W. Bader. “Tensor Decompositions and
Applications.” SIAM Review, Society for Industrial and Applied Mathematics,
2009, https://epubs.siam.org/doi/10.1137/07070111X.

5. Li, Jiajia, et al. “HICOO: Hierarchical Storage of Sparse Tensors.” IEEE Xplore,
Nov. 2018, https://ieeexplore.ieee.org/abstract/document/8665782.

References
6. Lowe, Robert, and Michael V. Berry. Using Non-Negative Tensor Decomposition

for Unsupervised Textual Influence Modeling. Sept. 2019,
https://doi.org/10.1007/978-3-030-22475-2_4. Accessed 19 July 2023.

7. Lowe, Robert, et al. “Hashed-Coordinate Storage of Sparse Tensors.”
Hashed-Coordinate Storage of Sparse Tensors, Nov. 2021,
https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rp
ost108.html.

8. “MacBook pro (Retina, 13-Inch, Late 2013) - Technical Specifications.”
Apple.com, 2013, support.apple.com/kb/sp691?locale=en_US. Accessed 17
July 2023.

9. “Measure the Performance of Your Code.” Mathworks.com, The MathWorks,
Inc.,
www.mathworks.com/help/matlab/matlab_prog/measure-performance-of-your-p
rogram.html. Accessed 17 July 2023.

https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost108.html
https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost108.html

References
10. Smith, Shaden, et al. “FROSTT: The Formidable Repository of Open Sparse

Tensors and Tools.” Frostt.io, 2017, frostt.io/. Accessed 17 July 2023.
11. Smith, Shaden, et al. “SPLATT: Efficient and Parallel Sparse Tensor-Matrix

Multiplication.” IEEE Xplore, May 2015,
https://ieeexplore.ieee.org/abstract/document/7161496/?casa_token=19Se-TW
P4iAAAAAA%3AnWsOkFJqOzg-clXzamHuUTZ_DnMGqVwdGBSEoEyKGSF2L
0_CaZNnqCxsKEjaxBUvCwP80nhV6w.

12. “Tensor Toolbox for MATLAB.” Tensortoolbox.org, 2023,
www.tensortoolbox.org/index.html. Accessed 18 July 2023.

