Hashed Coordinate Sparse Tensor Storage with MATLAB

MeiLi Charles Advisor: Michael Berry

Outline

- 1. Background and Motivation
- 2. Existing Storage Formats
- 3. Hashed Coordinate (HaCOO) format
- 4. Evaluation
- 5. Textual Analysis Application
- 6. Conclusions and Future Goals
- 7. Q&A

Motivation

 Many important application domains produce and manipulate massive amounts of high-dimensional data

• This data can also be sparse

Motivation

- For sparse tensors, we want to reduce storage requirements and eliminate meaningless computations on 0 values.
- Challenge: How do we effectively store and compute using high dimensional data?

- A tensor is an *n*-way array
- Each way is referred to as a *mode*
- The number of modes determines a tensor's *order*

A third-order tensor

(a) Mode-1 (column) fibers: $\mathbf{x}_{:jk}$ (b) Mode-2 (row) fibers: $\mathbf{x}_{i:k}$

(c) Mode-3 (tube) fibers: \mathbf{x}_{ij} :

- A tensor can be unfolded, or *matricized* along any of its modes
- $\mathcal{X}_{(n)}$ is a matricized tensor unfolded along the n^{th} mode and is composed of mode-*n* fibers.

Frontal slices:
$$\boldsymbol{\mathcal{X}}_{1} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{2} = \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix}$$

 $\boldsymbol{\mathcal{X}}_{(1)} = \begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix}, \quad \boldsymbol{\mathcal{X}}_{(2)} = \begin{bmatrix} 1 & 2 & 3 & 7 & 8 & 9 \\ 4 & 5 & 6 & 10 & 11 & 12 \end{bmatrix}$

$$\boldsymbol{\mathcal{X}}_1 = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_2 = \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix}$$

The Kronecker product of matrices $\mathbf{A} \in \mathbb{R}^{I \times J}$ and $\mathbf{B} \in \mathbb{R}^{K \times L}$ is denoted by $\mathbf{A} \otimes \mathbf{B}$, which results in a (IJ) x (KL) matrix:

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & a_{12}\mathbf{B} & \dots & a_{1J}\mathbf{B} \\ a_{21}\mathbf{B} & a_{22}\mathbf{B} & \dots & a_{2J}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{I1}\mathbf{B} & a_{I2}\mathbf{B} & \dots & a_{IJ}\mathbf{B} \end{bmatrix}$$

 $= \begin{bmatrix} \mathbf{a_1} \otimes \mathbf{b_1} & \mathbf{a_1} \otimes \mathbf{b_2} & \mathbf{a_1} \otimes \mathbf{b_3} & \dots & a_J \otimes \mathbf{b}_{L-1} & a_J \otimes \mathbf{b}_L \end{bmatrix}$

The *Khatri-Rao product* is defined in terms of the Kronecker product. The Khatri-Rao product of matrices $\mathbf{A}^{I \times J}$ and $\mathbf{B}^{M \times J}$ is denoted by $\mathbf{A} \odot \mathbf{B}$, where the resulting matrix is (IM) x J.

$$\mathbf{A} \odot \mathbf{B} = [a_1 \otimes b_1, a_2 \otimes b_2, \dots, a_n \otimes b_n]$$

• Goal: approximate a mode-N tensor X as the sum of R rank-1 tensors

• An *n*-way tensor is rank-1 if it can be written as the outer product of *n* vectors

For the **3-way** case...

• Given 3 vectors:

 $\mathbf{a} \in \mathbb{R}^m, \mathbf{b} \in \mathbb{R}^n, \mathbf{c} \in \mathbb{R}^p$

• Their **outer product** is:

$$\boldsymbol{\mathcal{X}} = \mathbf{a} \circ \mathbf{b} \circ \mathbf{c} \in \mathbb{R}^{m imes n imes p}$$

• Each entry is given by:

$$x(i,j,k) = a(i)b(j)c(k)$$

Let $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{I \times J \times K}$ be a three-way tensor.

Compute a CP decomposition with *R* components that best approximates $\boldsymbol{\chi}$, i.e., to find:

$$\min_{\hat{\mathbf{X}}} \|\mathbf{X} - \hat{\mathbf{X}}\| \quad \text{with} \quad \hat{\mathbf{X}} = \sum_{r=1}^{R} \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r = \llbracket \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket.$$
Factor matrices

Decompose 3-way tensor $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{I \times J \times K}$ into 3 factor matrices:

$$A \in \mathbb{R}^{I imes R}, B \in \mathbb{R}^{J imes R}, C \in \mathbb{R}^{K imes R}$$

The following produces approximate matricizations of the original tensor:

$$\begin{split} \mathbf{X}_{(1)} &\approx \mathbf{A} (\mathbf{C} \odot \mathbf{B})^{\mathsf{T}}, \\ \mathbf{X}_{(2)} &\approx \mathbf{B} (\mathbf{C} \odot \mathbf{A})^{\mathsf{T}}, \\ \mathbf{X}_{(3)} &\approx \mathbf{C} (\mathbf{B} \odot \mathbf{A})^{\mathsf{T}}. \end{split}$$

To compute CP, we will use the Alternating Least Squares (ALS) method.

Method:

- Fix matrix **B** and **C** and solve for matrix **A**
- Fix **A** and **C** to solve for **B**
- Fix A and B to solve for C

For example:

Matrices **B** and **C** are fixed, solve for **A**.

$$\mathbf{A} = \min_{\mathbf{A}} \parallel \boldsymbol{\mathcal{X}}_{(1)} - \mathbf{A}(\mathbf{C} \odot \mathbf{B})^T \parallel_F^2$$

• The optimal solution is given by:

$$\mathbf{A} = \boldsymbol{\mathcal{X}}_{(1)}[(\mathbf{C} \odot \mathbf{B})^T]^{\dagger}$$

• The following form is preferred:

$$\mathbf{A} = \boldsymbol{\mathcal{X}}_{(1)}(\mathbf{C} \odot \mathbf{B})(\mathbf{C}^T \mathbf{C} * \mathbf{B}^T \mathbf{B})^{\dagger}$$

 Only need to calculate the pseudoinverse of an R x R matrix, instead of a (JK) x R matrix

CP-ALS: repeat $\mathbf{A} = \underbrace{\mathcal{X}_{(1)}(\mathbf{C} \odot \mathbf{B})}_{(\mathbf{C}^T \mathbf{C} * \mathbf{B}^T \mathbf{B})^{\dagger}}$ $\mathbf{B} = \underbrace{\mathcal{X}_{(2)}(\mathbf{C} \odot \mathbf{A})}_{(\mathbf{C}^T \mathbf{C} * \mathbf{A}^T \mathbf{A})^{\dagger}}$ $\mathbf{C} = \underbrace{\mathcal{X}_{(3)}}_{(3)}(\mathbf{B} \odot \mathbf{A})(\mathbf{B}^T \mathbf{B} * \mathbf{A}^T \mathbf{A})^{\dagger}$

until maximum number of iterations are reached or error less than ε

end

MTTKRP

Algorithm 1: MTTKRP via Sparse Tensor-Vector products [23]

Input: indI[M], indJ[M], indK[M], vals[M] dense matrices $B^{J \times R}$, $C^{K \times R}$ Output: dense matrix $\mathbf{M}^{I \times R}$

1 for
$$f=0$$
 to F do
2 | for $z=0$ to M do
3 | $t[z] = vals[z] * \mathbf{B}(indJ[z], f) * \mathbf{C}(indK[z], f)$;
4 end
5 | for $z=0$ to M do
6 | $\mathbf{M}(indI[z], f) = \mathbf{M}(indI[z], f) + t[z]$;
7 | end
8 end

- Retrieved from FROSTT, Formidable Repository of Open Sparse Tensors and Tools
- Publicly available collection of sparse tensor datasets to facilitate reproducible results

- Uber tensor: data on Uber pickups in New York City
- NELL-2 tensor: a smaller version of NELL-1, which is pulled from the Never Ending Language Learner knowledge base, part of a machine learning project from Carnegie Mellon University.
- Enron tensor: email data that was publicly released during an investigation by the Federal Energy Regulatory Commission

- Chicago tensor: crime reports in the city of Chicago
- Nips tensor: publications from the NeurIPS Conference on Neural Information Processing Systems.
- LBNL tensor: anonymized internal network traffic from Lawrence Berkeley National Laboratory (LBNL).

tensor	Μ	dimensions	storage
uber	$3.3\mathrm{M}$	$183 \times 24 \times 1.1 \mathrm{K} \times 1.7 \mathrm{K}$	$52.9 \mathrm{MB}$
nell-2	$76.9\mathrm{M}$	$12.1\mathrm{K} \times 9.2\mathrm{K} \times 28.8\mathrm{K}$	$1.51~\mathrm{GB}$
enron	$54.2\mathrm{M}$	$6K \times 5.7K \times 1.2K$	1.2 GB
chicago	$5.3\mathrm{M}$	$6.2K \times 24 \times 77 \times 32$	80 MB
nips	$3.1\mathrm{M}$	$2.5K \times 2.9K \times 14K \times 17$	$58.9 \mathrm{MB}$
lbnl	$1.7\mathrm{M}$	$1.6\mathrm{K} \times 4.2\mathrm{K} \times 1.6\mathrm{K} \times 4.2\mathrm{K} \times 868.1\mathrm{K}$	$55.1 \mathrm{MB}$

Can be roughly grouped into list, block, or tree structures
Dates range from 2009-2021

- Coordinate (COO) format
- Kolda and Bader, 2009
- Stores elements in a list
- "Standard" sparse tensor storage format
- Sorted or unsorted

i	j	k val		
0	0	0	1	
0	1	0	2	
1	0	0	3	
1	0	2	4	
2	1	0	5	
2	2	2	6	
3	0	1	7	
3	3	2	8	

- Compressed Sparse Fiber (CSF) format
- Smith and Karypis, 2015
- Tree-based format
- Mode-specific

SPLATT

(The Surprisingly ParalleL spArse Tensor Toolkit)

- Hierarchical Coordinate (HiCOO) format
- Li et al., 2018
- Block-based format
- Smaller space to search within blocks
- Smaller indices means less bits to store

ParTI!

(A Parallel Tensor Infrastructure!)

	bptr	bi	bj	bk	ei	ej	ek	val
	0	0	0	0	0	0	0	1
B1					0	1	0	2
					1	0	0	3
B2	3	0	0	1	1	0	2	4
B3	4	1	0	0	2	1	0	5
					3	0	1	7
B4	6	1	1	1	2	2	2	6
					3	3	2	8

- Adaptive Linearized Storage of Sparse Tensors (ALTO)
 - Helal et. al, 2021
 - Uses bit encoding to order indexes along a line

ALTO library

Why another format?

- Many existing formats:
 - rely on spatial locality of non-zero elements (HiCOO, CSF)
 - do not have a method to insert new tensor values (ALTO, CSF, HiCOO)
- Why MATLAB?
 - Tensor Toolbox
 - Common application that is easily accessible

Hashed Coordinate Format (HaCOO)

• Developed by Robert Lowe, et. al. (2021)

Separate chaining hash table to store tensor indices and values

- Uses a low-collision hash function to map indexes into slots within the table
- Amortized O(1) insertion, update, and retrieval

Hashed Coordinate Format (HaCOO)

Determine hash values

Algorithm 3: Hash Values

Input: number of buckets in hash table *nbuckets*

Output: sx, sy, sz, mask

1
$$bits = \log_2 (nbuckets)$$

$$2 sx = ceil(bits / 8) - 1$$

3
$$sy = 4 * sx - 1$$

$$4 \ sz = \operatorname{ceil}(bits \ / \ 2) - 1$$

5
$$mask = nbuckets-1$$

Hashed Coordinate Format (HaCOO)

Jenkins One-at-a-Time Hash

Algorithm 4: Hash Algorithm

Input: list of non-zero integers *index*

Output: morton value m, hash key k

- 1 m = morton(index)
- 2 $hash = hash + hash \ll sx$
- **3** $hash = hash \oplus hash \gg sy$
- 4 $hash = hash + hash \ll sz$
- 5 k = hash & mask

Hashed Coordinate Format (HaCOO)

Example:

idx	morton	step 2	step 3	step 4	k
0, 0, 0	000000	0000000	0000000	000000000	0
0, 1, 0	000010	0000100	0000110	000011110	14
1, 0, 0	000001	0000010	0000011	000001111	15
1, 0, 2	100001	1000010	1100011	111101111	15
2, 1, 0	001010	0010100	0011110	010010110	6
2, 2, 2	111000	1110000	1001000	101101000	8
3, 0, 1	001101	0011010	0010111	001110011	3
3, 3, 2	111011	1110110	1001101	110000001	1

Hashed Coordinate Format (HaCOO)

	Collision	Mean	Median	Mode	Max
Tensor	Rate	Probe Depth	Probe Depth	Probe Depth	Probe Depth
uber	16.43%	1.20	1	1	7
nell-2	26.45%	1.36	1	1	11
enron	37.53%	1.60	1	1	37
chicago	57.27%	25.95	2	1	28
nips	77.31%	4.41	4	4	29
lbnl	89.39%	9.43	1	1	2994

Hashing statistics using the original hash function.

Modified Hashing

- Can the hash function be improved?
- Original algorithm:

 convert tensor index to Morton code, apply Jenkins hash
- Modified algorithm:

 concatenate the tensor index, apply Jenkins hash

Modified Hashing

	Collision	Mean	Median	Mode	Max
Tensor	Rate	Probe Depth	Probe Depth	Probe Depth	Probe Depth
uber	17.17%	1.21	1	1	7
nell-2	23.87%	1.31	1	1	9
enron	17.74%	1.22	1	1	8
chicago	26.23%	1.36	1	1	8
nips	16.40%	1.20	1	1	7
lbnl	17.13%	1.21	1	1	7

Results using the modified hash.

HaCOO MATLAB Class

- Create, manipulate, and perform CP decomposition on HaCOO format tensors
- The *htensor* class:
 - hash table, represented as a cell array
 - individual cells contain a matrix of index-value tuples that have hashed into that bucket
 - locations of non-empty buckets
 - modes, number of nonzero elements, maximum chain length, hash parameters, etc.

HaCOO MATLAB Class

- Methods to set/get/search for a tensor index, extract all indexes/values, rehash
- Various class constructors:
 - create a blank HaCOO tensor
 - create a HaCOO tensor from COO tensor or text file

Additional functions to read and write HaCOO tensors from a .mat file.

- How do we evaluate HaCOO vs COO in MATLAB?
- Method: simulate "online updates" by inserting elements
- FROSTT tensors are in COO format, pre-sorted and verified to have no duplicate entries

Solution: randomly shuffle the rows of the COO tensor and insert nonzeros one at a time

- Accumulate the time required to insert an element
- Compare wall-clock and CPU time

Building a new COO tensor took days!

• Limit the number of inserted elements to the first *n* entries

Setup:

- Apple MacBook Pro (late 2013)
 2.4 GHz Dual-Core Intel Core i5 processor
 128 GB and 4 GB of 1600MHz DDR3L onboard memory

MATLAB functions:

- *tic/toc* to measure elapsed time *cputime* to measure total CPU time (summed across threads)

Reported times are averaged over 10 trials

- HaCOO format began to consistently outperform COO once the number of elements inserted reached 25,000.
- Inserting 100,000 random elements from the Uber tensor using HaCOO format yielded around 91-93% reduction in both cumulative wall-clock and CPU time compared to COO format

Average wall-clock time required to insert 25,000 elements

Average CPU time required to insert 25,000 elements

Average wall-clock time required to insert 100,000 elements

Average CPU time required to insert 100,000 elements

Average wall-clock time and CPU time percent decrease to insert n elements into the Uber tensor using HaCOO vs COO

Evaluations - MTTRKP

MTTRKP is typically the main bottleneck of CP decomposition

$$\mathbf{A} = \boldsymbol{\mathcal{X}}_{(1)} (\mathbf{C} \odot \mathbf{B}) (\mathbf{C}^T \mathbf{C} * \mathbf{B}^T \mathbf{B})^{\dagger}$$

- HaCOO method:
 - extract all elements from nonempty cells from the hash table
- Time and report averages to compute MTTKRP over every mode

Evaluations - MTTRKP

- On average, HaCOO's current MTTRKP method incurs around 26.78% increase in time
- Largest increase observed was over mode 4 of the Chicago tensor
 - 77.88% increase in time to complete
 - Maximum difference in elapsed time over any mode was slightly over 4 seconds

Text Analysis Application

- Textual Influence model by Lowe (2018)
- · Goal:
 - Use sparse tensor decomposition to measure the weight of influence a written document exerts on a target work

First step is to convert all documents into tensors.

Sample document:

The cat jumped on the couch. He yawned and stretched. Then he fell asleep.

1	the	7	yawned
2	cat	8	and
3	jumped	9	stretched
4	on	10	then
5	couch	11	fell
6	he	12	asleep

Index vocabulary:

the	cat	jumped	on	the	couch
the	cat	jumped	on	the	couch
the	cat	jumped	on	the	couch
the	cat	jumped	on	the	couch

Counting *n*-grams using a sliding window

The cat jumped on the couch. He yawned and stretched. Then he fell asleep.

1	the	7	yawned
2	cat	8	and
3	jumped	9	stretched
4	on	10	then
5	couch	11	fell
6	he	12	asleep

1, 2, 3	the cat jumped	6, 7, 8	he yawned and
2, 3, 4	cat jumped on	7, 8, 9	yawned and stretched
3, 4, 1	jumped on the	8, 9, 10	and stretched then
4, 1, 5	on the couch	9, 10, 6	stretched then he
1, 5, 6	the couch he	10, 6, 11	then he fell
5, 6, 7	couch he yawned	6, 11, 12	he fell asleep

List of n-grams with corresponding indices

- Unsorted document tensor
- None of the n-grams repeated, so values are 1
- Not all possible n-grams will appear, so these tensors are sparse

i	j	k	value
1	2	3	1
2	3	4	1
3	4	1	1
4	1	5	1
1	5	6	1
5	6	7	1
6	7	8	1
7	8	9	1
8	9	10	1
10	6	11	1
6	11	12	1

HaCOO vs COO

- A document tensor's modes grows with the size of the vocabulary
 - COO must spend an increasing amount of time searching if the n-gram/index already exists
 - Additional time to do an in-order insert
- HaCOO can spend a constant amount of time to insert

Conference Corpus

- 5 papers on handwritten digit recognition
- 2 papers on unrelated topics
- 45,152 words total 5,236 unique words

Num	Document Information
	Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A
1	symbolic representation of time series, with implications for
	streaming algorithms. In Proc. DMKD 2003, pages 211. ACM Press, 2003.
	Andreas Schlapbach and Horst Bunke. Using hmm
2	based recognizers for writer identication and
	verication. In Proc. FHR 2004, pages 167172. IEEE, 2004.
	Yusuke Manabe and Basabi Chakraborty. Identity
3	detection from on-line handwriting time series. In Proc.
	SMCia 2008, pages 365370. IEEE, 2008.
	Sami Gazzah and Najoua Ben Amara. Arabic
4	handwriting texture analysis for writer identication
4	using the dwt-lifting scheme. In Proc. ICDAR 2007,
	pages 11331137. IEEE, 2007.
۲	Kolda, Tamara Gibson. Multilinear operators for higher-order
5	decompositions. 2006
6	Blei, David M and Ng, Andrew Y and Jordan, Michael I. Latent
0	dirichlet allocation. 2007
	Serfas, Doug. Dynamic Biometric Recognition of Handwritten Digits
7	Using Symbolic Aggregate Approximation. Proceedings of the ACM
	Southeast Conference 2017

Shakespeare Corpus

7 works by William Shakespeare

181,760 words total15,203 unique words

Num	Document Information
	"Hamlet, Prince of Denmark by William Shakespeare."
1	Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1524.
	Accessed 10 July 2023.
	"Julius Caesar by William Shakespeare."
2	Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1522.
	Accessed 10 July 2023.
	"Macbeth by William Shakespeare."
3	Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1533.
	Accessed 10 July 2023.
	"A Midsummer Night's Dream by William Shakespeare."
4	Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1514.
	Accessed 10 July 2023.
	"Othello, the Moor of Venice by William Shakespeare."
5	Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1531.
	Accessed 10 July 2023.
	"The Tragedy of Romeo and Juliet by William Shakespeare."
6	Project Gutenberg, Nov. 1997, www.gutenberg.org/ebooks/1112.
	Accessed 10 July 2023.
32	"Twelfth Night; Or, What You Will by William Shakespeare."
7	Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1526.
	Accessed 10 July 2023.

MATLAB scripts to build a vocabulary and build document tensors (Appendix B)

Time how long to build and decompose all document tensors using CP-ALS (50 components)

constrained and unconstrained vocabularies

HaCOO: Initial number of buckets was specified to be 1,048,576, or 2²⁰

Results

- Conference corpus
 - 44-49% reduction in both wall-clock and CPU time for both the constrained and unconstrained cases
- Shakespeare corpus
 - Constrained:
 - ~14% decrease in wall-clock time
 - ~32% decrease in CPU time
 - Unconstrained:
 - ~72% decrease in wall-clock time
 - ~78% decrease in CPU time

Results - Conference Corpus

Average wall-clock time required to build and decompose all document tensors for the Conference corpus using CP-ALS

Results - Conference Corpus

Average CPU time required to build and decompose all document tensors for the Conference corpus using CP-ALS

Results - Shakespeare Corpus

Average wall-clock time required to build all document tensors for the Shakespeare corpus and compute CP-ALS

Results - Shakespeare Corpus

Average CPU time required to build all document tensors for the Shakespeare corpus and compute CP-ALS

vocabulary

Conclusions

How to store large, sparse, high-dimensional data?
Many common sparse tensor storage formats do not allow tensor updates

- HaCOO format benefits:
 - constant time insertion and retrieval
 - MATLAB class to interface with Tensor Toolbox for additional tensor operations without requiring additional hardware or environment setup

Conclusions

- HaCOO outperformed COO format in terms of tensor updates once the number of elements reached a specific threshold.
- CP-ALS was comparable, due to HaCOO's MTTRKP operation incurs a small amount of overhead from extracting tensor elements from the hash table

Future Goals

- MATLAB code clean-up
- What tensor properties contribute to a higher collision rate?
- Further improve hash function
- Workshop on Sparse Tensor Computations
 - University of Illinois Urbana-Champaign
 - October 2023
- Journal article to ACM-TOMS

Q&A

Thank you for your time!

References

- 1. Choi, Jee, et al. "Blocking Optimization Strategies for Sparse Tensor Computation." SIAM, July 2017, chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://users.wfu.edu/balla rd/SIAM-AN17/choi.pdf.
- 2. Hastad, J. (1990). Tensor rank is np-complete. Journal of Algorithms, 11(4):644-654.
- 3. Helal, et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. June 2021, https://doi.org/10.1145/3447818.3461703. Accessed 19 July 2023.
- 4. Kolda, Tamara G., and Brett W. Bader. "Tensor Decompositions and Applications." *SIAM Review*, Society for Industrial and Applied Mathematics, 2009, https://epubs.siam.org/doi/10.1137/07070111X.
- 5. Li, Jiajia, et al. "HICOO: Hierarchical Storage of Sparse Tensors." *IEEE Xplore*, Nov. 2018, https://ieeexplore.ieee.org/abstract/document/8665782.

References

- 6. Lowe, Robert, and Michael V. Berry. Using Non-Negative Tensor Decomposition for Unsupervised Textual Influence Modeling. Sept. 2019, https://doi.org/10.1007/978-3-030-22475-2 4. Accessed 19 July 2023.
- 7. Lowe, Robert, et al. "Hashed-Coordinate Storage of Sparse Tensors." *Hashed-Coordinate Storage of Sparse Tensors*, Nov. 2021, <u>https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rp_ost108.html</u>.
- "MacBook pro (Retina, 13-Inch, Late 2013) Technical Specifications." Apple.com, 2013, support.apple.com/kb/sp691?locale=en_US. Accessed 17 July 2023.
- 9. "Measure the Performance of Your Code." Mathworks.com, The MathWorks, Inc.,

www.mathworks.com/help/matlab/matlab_prog/measure-performance-of-your-p rogram.html. Accessed 17 July 2023.

References

- 10. Smith, Shaden, et al. "FROSTT: The Formidable Repository of Open Sparse Tensors and Tools." Frostt.io, 2017, frostt.io/. Accessed 17 July 2023.
- Smith, Shaden, et al. "SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication." IEEE Xplore, May 2015, https://ieeexplore.ieee.org/abstract/document/7161496/?casa_token=19Se-TW P4iAAAAA%3AnWsOkFJqOzg-clXzamHuUTZ_DnMGqVwdGBSEoEyKGSF2L 0_CaZNnqCxsKEjaxBUvCwP80nhV6w.
- 12. "Tensor Toolbox for MATLAB." Tensortoolbox.org, 2023, www.tensortoolbox.org/index.html. Accessed 18 July 2023.

