Hashed Coordinate Sparse Tensor
Storage with MATLAB

MeilLi Charles
Advisor: Michael Berry

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Outline

1. Background and Motivation

2. Existing Storage Formats

3. Hashed Coordinate (HaCOO) format
4. Evaluation

5. Textual Analysis Application

6. Conclusions and Future Goals
7. Q&A




Motivation

* Many important application domains produce and manipulate
massive amounts of high-dimensional data

* This data can also be sparse

amazon
~—




Motivation

- For sparse tensors, we want to reduce storage requirements and
eliminate meaningless computations on 0 values.

» Challenge: How do we effectively store and compute using high
dimensional data?

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Background

* A tensor is an n-way array

*Each way is referred to as a
mode

* The number of modes
determines a tensor’s order

Fef_ J

A third-order tensor




Background

aininiafalaln
Lk _/—_/-_/—_/-_/_/ ﬂ{{{{{({{ﬂl

(a) Mode-1 (column) fibers: x.;x (b) Mode-2 (row) fibers: x;.x (c) Mode-3 (tube) fibers: x;;.

TENNESSEE [ §

KNOXVILLE



Background

P

g |

|
|
&
£
&
& I
N |}
L -
- A &

(a) Horizontal slices: X;.. (b) Lateral slices: X.;. (c) Frontal slices: X..p (or X})

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Background

« Atensor can be unfolded, or matricized along any of its modes

« X(n)is a matricized tensor unfolded along the n” mode and is
composed of mode-n fibers.




Background

1 4 7 10

Frontal slices: Xi=|2 &| &=|]|8 11
3 6 9 12
1 4 7 10 " g

| 2 & 7 & 9

Xy=125 8 11|, Xg =
456 10 11 12

o 6 9 12




Background

1 4 7 10
Ai=|2 5| &= |8 11
3 6 0 12




Background

The Kronecker product of matrices A € R’*’ and B ¢ R¥*!is denoted
by A ® B, which results in a (1J) x (KL) matrix:

CL11B (llzB (11,]B

an1B a»xB ... ay/B
A 2 B — 21 22 2J
CL[1B CL[QB B a]_]B

:[al®b1 a;®bs a;®bsy ... a; by 4 a.]®bL]




Background

The Khatri-Rao product is defined in terms of the Kronecker product.
The Khatri-Rao product of matrices A*/and BMxJ is denoted by

A © B, where the resulting matrix is (IM) x J.

A@B:[a1®b1,a2®b2,...,an®bn]




Canonical Polyadic Decomposition (CPD)

» Goal: approximate a mode-N tensor X as the sum of R rank-1 tensors

Data Low-Rank Model

b
& <§> M 1 - % + ..+ <

TENNESSEE [ §

KNOXVILLE



Canonical Polyadic Decomposition (CPD)

* An n-way tensor is rank-1 if it can be written as the outer product of n
vectors

TENNESSEE [ §

KNOXVILLE



Canonical Polyadic Decomposition (CPD)

For the 3-way case...

. Given 3 vectors:
acR", beR" ceRP

- Their outer product is:

X =aoboc e R™"*P .
/ b
= y

- Each entry is given by: = =2t

z(1, 4, k) = a(i)b(j)c(k)




Canonical Polyadic Decomposition (CPD)

Let X € RI*IXE pe a three-way tensor.

Compute a CP decomposition with R components that best
approximates X, i.e., to find:

R
min |X — X| with X = Z ay: @ by 916, =|[ A, B, O],
% pe=1 1

Factor matrices

TENNESSEE [ §

KNOXVILLE



Canonical Polyadic Decomposition (CPD)

Decompose 3-way tensor x ¢ RIX/*K into 3 factor matrices:
IxR J xR KxR
Ae R Be RV C e RS

The following produces approximate matricizations of the original tensor:
X1y ~A(CoOB)',
X(Q) ~ B(C @ A)T,

TENNESSEE [ §

KNOXVILLE



Canonical Polyadic Decomposition (CPD)

To compute CP, we will use the Alternating Least Squares (ALS)
method.

Method:

e Fix matrix B and C and solve for matrix A
e Fix A and C to solve for B

e Fix A and B to solve for C

TENNESSEE [ §

KNOXVILLE



Canonical Polyadic Decomposition (CPD)

For example:

Matrices B and C are fixed, solve for A.
A =min || X4 — A(COB)" |k

- The optimal solution is given by:

A =Xy[(CoB)']

TENNESSEE [ §

KNOXVILLE



Canonical Polyadic Decomposition (CPD)

- The following form is preferred:
A =X, (CoB)(C'CxB'B)!

. Only need to calculate the pseudoinverse of an R x R matrix,
instead of a (JK) x R matrix

TENNESSEE [ §

KNOXVILLE



Canonical Polyadic Decomposition (CPD)

CP-ALS:

repeat Matricized Tensor Times Khatri-Rao Product (MTTKRP)

A =y(CoB)C'CxB'B)!
B=X3(Co®A)(CT'CxATA)
C=X3BoA)(B'BxATA)!

until maximum number of iterations are reached or error less than ¢

end




MTTKRP

Algorithm 1: MTTKRP via Sparse Tensor-Vector products [23]
Input: indI[M], indJ[M], ind K|M], vals[M| dense matrices B/*f CHE*E
Output: dense matrix M/*#
for f=0to F' do
for z=0 to M do
| t[2] = vals[z] *x B(indJ[2], f) * C(indK 2], f) ;
end
for z=0 to M do
| M(indI[2], f) = M(indI[2], f) + t[2] ;

end

w I o Gt bk W N =

end

TENNESSEE [ §

KNOXVILLE




Datasets

- Retrieved from FROSTT, Formidable Repository of Open Sparse
Tensors and Tools

- Publicly available collection of sparse tensor datasets to facilitate
reproducible results




Datasets

- Uber tensor: data on Uber pickups in New York City

- NELL-2 tensor: a smaller version of NELL-1, which is pulled from
the Never Ending Language Learner knowledge base, part of a
machine learning project from Carnegie Mellon University.

- Enron tensor: email data that was publicly released during an
investigation by the Federal Energy Regulatory Commission




Datasets

. Chicago tensor: crime reports in the city of Chicago

- Nips tensor: publications from the NeurlPS Conference on Neural
Information Processing Systems.

- LBNL tensor: anonymized internal network traffic from Lawrence
Berkeley National Laboratory (LBNL).

TENNESSEE [ §

KNOXVILLE



Datasets

tensor M dimensions storage
uber 3.3M 183 x 24 x L.IK x 1.7TK 52.9 MB
nell-2 76.9M 12.1K x 9.2K x 28.8K 1.51 GB
enron | 54.2M 6K x 5.7K x 1.2K 1.2 GE
chicago | 5.3M 6.2K x 24. % TT % 32 80 MB
nips 3.1M 28K x 29K % 14K % 17 58.9 MB
Ibnl 1.7/M  1.6K x 4.2K x 1.6K x 4.2K x 868.1K 55.1 MB




Sparse Tensor Storage Formats

* Can be roughly grouped into list, block, or tree structures
* Dates range from 2009-2021




Sparse Tensor Storage Formats

_ i j k val

* Coordinate (COO) format cTolo B
— Kolda and Bader, 2009 0[1]0 |2
— Stores elements in a list 1({0]0]3
— “Standard” sparse tensor storage format 11ol214
— Sorted or unsorted >l110ls
21212 1|6

3101117

313(218

TENNESSEE [ §

KNOXVILLE



Sparse Tensor Storage Formats

*Compressed Sparse Fiber (CSF)
format |
— Smith and Karypis, 2015

— Tree-based format
— Mode-specific HOJOROXOXOXOROJE

SPLATT

(The Surprisingly ParalleL spArse Tensor : @ @ @ @ @ @ @ @
Toolkit) vl ‘ . . “ . .‘

TENNESSEE [ §

KNOXVILLE



Sparse Tensor Storage Formats

* Hierarchical Coordinate bptr  bi bj bk ei e ek val
(HICOO) format o oo ofo|[o]o] 1
— Block-based format
— Smaller space to search within o (50 ]] ©F .
blocks B2 | 3 |00 1|1f[0]|2]|a
- %rré?cl)lreerindices meanslessbits . T2 T1Tol ol 21 1|0 BE
ParTl! S e B
(A Parallel Tensor Infrastructure!) B4 | 6 |1|1[1]|2|2]|2] 66
5 3 2 8




Sparse Tensor Storage Formats

- Adaptive Linearized Storage of , gg” ™ S I s
Sparse Tensors (ALTO) o [l e % ®

o H e I aI et- aI y 202 1 0 . --------------------------- ALTO Tensor

— Uses bit encoding to order ST ege | olo000m0)
indexes along a line © 0101 g g0 wl | T | 2leoom
00 00 """""" X1,0,0 4 (000100)
. IR Eion 12 (001100)
ALTO |Ibral'y i o . ---------------------- . X210 34 (100010)
. 10 . """""""""""""""""""""""""" X222 56 (111000)
1 . _____________________ o . __________________ p— Yoo 37 (100101)
k=1 s /:}":: ------------ X5 62 (111110)
@ T (©)

TENNESSEE [ §

KNOXVILLE




Why another format?

- Many existing formats:
— rely on spatial locality of non-zero elements (HICOO, CSF)

— do not have a method to insert new tensor values (ALTO, CSF, HICOQ)

Why MATLAB?

- Tensor Toolbox
. Common application that is easily accessible




Hashed Coordinate Format (HaCOO)

* Developed by Robert Lowe, et. al. (2021)

» Separate chaining hash table to store tensor indices and values
— Uses a low-collision hash function to map indexes into slots within the table
— Amortized O(1) insertion, update, and retrieval

TENNESSEE [ §

KNOXVILLE



&

morton val

HaCOO format _Towom .
111000 | 6 2
g kol e val 3
o|lo|o]1 000000 1 | -
o|l1]|o B 000010 - .- >
1{o]o 8 100001 3 |t :
1 0 2 4 | Converteachindexto| 001010 4 ---Li_ ;
5 1 1ols Morton code N SOt 5 "_j i ‘\,‘(‘\\ ’/""" 111011 8 8
el s | 001010
SAED 111000 L e 001010 | 5 ’
ALAEY 001101 7 L T
1312188 111011 8 [T 11
- 1L e 001101 | 7 12
|t 13
\ 14
Ny, B 000010 | 2 i
Apply Teilissione = | toooot ]
at-a-Time Hash > 16

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Hashed Coordinate Format (HaCOO)

* Determine hash values

Algorithm 3: Hash Values
Input: number of buckets in hash table nbuckets

Output: sz, sy, sz, mask
1 bits = log, (nbuckels)
2 st = ceil(bits / 8) — 1
3 sy =41 =% sx-1
4 sz = ceil(bits / 2) — 1

5 mask = nbuckets-1

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Hashed Coordinate Format (HaCOO)

« Jenkins One-at-a-Time Hash

Algorithm 4: Hash Algorithm
Input: list of non-zero integers index

Output: morton value m, hash key k

1 m = morton(index)

2 hash = hash + hash < sx
3 hash = hash ©hash > sy

a hash = hash + hash < sz

5 k = hash & mask

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Hashed Coordinate Format (HaCOO)

Example:

idx | morton | step 2 | step 3 step 4 k
0, 0, 0 | 000000 | 0000000 | 0000000 | OOOOOOO0O | O
0, 1,0 | 000010 | 0000100 | 0000110 | 000011110 | 14
1, 0,0 | 000001 | 0000010 [ 0000011 | OO0O0L11L | 15
1,0,2 | 100001 | 1000010 | 1100011 | 111101111 | 15
2, 1,0 | 001010 | 0010100 | 0011110 | 010010110 | 6
2,2,2 | 111000 | 1110000 | 1001000 | 101101000 | &
3,0,11| 001101 | 0011010 | 0010111 | OO1110011 | 3
3,3,2| 111011 | 1110110 | 1001101 | 110000001 | 1

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Hashed Coordinate Format (HaCOO)

Collision Mean Median Mode Max
Tensor Rate Probe Depth Probe Depth Probe Depth Probe Depth
uber 16.43% 1.20 1 1 i
nell-2 26.45% 1.36 1 1 11
enron 37.53% 1.60 1 1 37
chicago | 57.27% 25.95 7 1 28
nips 77.31% 4.41 4 4 29
Ibnl 89.39% 9.43 1 1 2994

Hashing statistics using the original hash function.




Modified Hashing

» Can the hash function be improved?

» Original alg{orithm: |
— convert tensor index to Morton code, apply Jenkins hash

» Modified algorithm: | |
— concatenate the tensor index, apply Jenkins hash

INNERN A T

KNOXVILLE



Modified Hashing

Collision Mean Median Mode Max
Tensor Rate Probe Depth Probe Depth Probe Depth Probe Depth
uber 17.17% £ 1 1 7
nell-2 23.87% 1.31 1 1 9
enron 17.74% 1.22 1 1 8
chicago | 26.23% 1.36 1 1 8
nips 16.40% 1.20 1 1 f
Ibnl 17.13% 1.21 1 1 7

Results using the modified hash.

TENNESSEE [ §

KNOXVILLE



HaCOO MATLAB Class

. Create, manipulate, and perform CP decomposition on HaCOO
format tensors

- The htensor class:
— hash table, represented as a cell array
— individual cells contain a matrix of index-value tuples that have hashed into
that bucket
— locations of non-empty buckets
— modes, number of nonzero elements, maximum chain length, hash
parameters, etc.

TENNESSEE [ §

KNOXVILLE



HaCOO MATLAB Class

- Methods to set/get/search for a tensor index, extract all
iIndexes/values, rehash

- Various class constructors:
— create a blank HaCOO tensor
— create a HaCOO tensor from COOQO tensor or text file

Additional functions to read and write HaCOO tensors from a .mat file.

TENNESSEE [ §

KNOXVILLE



Evaluations

- How do we evaluate HaCOO vs COQO in MATLAB?

. Method: simulate “online updates” by inserting elements

. FROSTT tensors are in COO format, pre-sorted and verified to have
no duplicate entries




Evaluations

Solution: randomly shuffle the rows of the COO tensor and insert
nonzeros one at a time

- Accumulate the time required to insert an element
. Compare wall-clock and CPU time

Building a new COO tensor took days!
- Limit the number of inserted elements to the first n entries

TENNESSEE [ §

KNOXVILLE



Evaluations

Setup:

: ple MacBook Pro (late 2013_)\3
. 2.4 GHz Dual-Core Intel Core i5 processor
- 128 GB and 4 GB of 1600MHz DDR3L onboard memory

MATLAB functions:

- tic/toc to measure elapsed time
. cputime to measure total CPU time (summed across threads)

Reported times are averaged over 10 trials

TENNESSEE [ §

KNOXVILLE



Updating FROSTT Tensors

- HaCOO format began to consistently outperform COO once the
number of elements inserted reached 25,000.

- Inserting 100,000 random elements from the Uber tensor using
HaCOO format yielded around 91-93% reduction in both cumulative
wall-clock and CPU time compared to COO format

TENNESSEE [ §

KNOXVILLE



Updating FROSTT Tensors

Average wall-clock time required to insert 25,000 elements

B COoO0 | HaCo0O0

25.00
20.72

19.57

20.00

15.00

10.00

seconds

5.00

0.00
uber nell-2 enron chicago nips lbnl

tensor

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Updating FROSTT Tensors

Average CPU time required to insert 25,000 elements

B COoO0 | HaCoO
40.00

30.00 27.28

20.00

seconds

10.00

0.00
uber nell-2 enron chicago nips lbnl

tensor

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Updating FROSTT Tensors

Average wall-clock time required to insert 100,000 elements
B Co0O | HaCO0O
400.00

345.84

300.00

200.00

seconds

100.00

0.00
uber nell-2 enron chicago nips Ibnl

tensor

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Updating FROSTT Tensors

Average CPU time required to insert 100,000 elements

M CoO0 W HaCo0O0
500.00

42376

400.00

300.00

200.00

seconds

100.00

0.00
uber nell-2 enron chicago nips Ibnl

tensor

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Evaluations

Average wall-clock time and CPU time percent decrease to
insert n elements into the Uber tensor using HaCOO vs COO

@ wall-clocktime percent decrease -~ Trendline for wall-clock time percent decrease
A CPUtime percentdecrease ~ Trendline for CPU time percent decrease

150

@ 100 - —
g ’/‘_ — ”“"" ‘
3 A __— g
£ B
L 50 /,f"/ -
5 A
o et g

// />

0 LL ~
0 50000 100000
n

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Evaluations - MTTRKP

- MTTRKP is typically the main bottleneck of CP decomposition

A =(X;)(C®B)C'C +xB'B)"

. HaCOO method:

— extract all elements from nonempty cells from the hash table

- Time and report averages to compute MTTKRP over every mode

TENNESSEE [ §

KNOXVILLE



Evaluations - MTTRKP

. On average, HaCOOQO'’s current MTTRKP method incurs around
26.78% increase in time

- Largest increase observed was over mode 4 of the Chicago tensor
— 77.88% increase in time to complete

— Maximum difference in elapsed time over any mode was slightly over 4
seconds

TENNESSEE [ §

KNOXVILLE



Average wall-clock time required to calculate MTTKRP over all modes

B mode1 [ mode2 | mode3 [ moded4 [ mode5
40.00

30.00 -

20.00

seconds

Avg: 8.88
10.00 -

Avg: 3.64 Avg:3.79

0.00

CO0 HaCOO COO HaCOO CO0 HaCOO CO0O HaCOO
uber chicago nips Ibnl

tensor

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Average CPU time required to calculate MTTKRP over all modes

B mode1 [ mode2 | mode3 [ mode4 [ mode5
300.00 -

200.00

seconds

100.00 - Avg: 76.81

Avg: 59.41 ’
Avg:49.13 Avg:4526 o Avg:48.57 Avg:47.00 Avg:82!13 Avg: 84.69

0.00

CO0 HaCOO COO HaCOO COO = HaCOO COO HaCOO
uber chicago nips Ibnl

tensor

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Text Analysis Application

- Textual Influence model by Lowe (2018)

. Goal:

— Use sparse tensor decomposition to measure the weight of influence a
written document exerts on a target work

First step is to convert all documents into tensors.




Representing Documents as Tensors

Sample document:

The cat jumped on the couch. He yvawned and stretched. Then he fell asleep.

1 | the 7 | vawned

2 | cat 8 | and

3 | jumped | 9 | stretched
4 | on 10 | then

couch 11 | fell

(6 ¢

Index vocabulary: 6 | he 15 | asleep

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Representing Documents as Tensors

e | | Gmmed ] e TR p——
e | st | meed | e | Be | i
the | et [Jumped [ _on | the ] coueh
the | et | jumped

Counting n-grams using a sliding window




Representing Documents as Tensors

The cat jumped on the couch. He yawned and stretched. Then he fell asleep.
1, 2, 3 | the cat jumped 6,7 8 he yawned and
1 | the 7 | yawned
9 | cat 8 | and 2, 3,4 | cat jumped on 7, 8,9 vawned and stretched
3 | jumped | 9 | stretched 3.4, 1 | jumped on the 8,9, 10 | and stretched then
4 | on 10 | then 4.1, 5 | on the couch 9, 10, 6 | stretched then he
D | couch | 11 ] fell 1,5, 6 | the couch he 10, 6, 11 | then he fell
6 | he 12 | asleep 5, 6, 7 | couch he vawned | 6, 11, 12 | he fell asleep

List of n-grams with corresponding indices

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Representing Documents as Tensors

k 1
Unsorted document i % ; Value
tensor
2| 3| 4 1
3141 1
- None of the n-grams 111 T3 1
repeated, so values
are 1 1 | 5| 6 1
5| 6 | 7 1
. 6 | 7 | 8 1
Not all possible =T 515 .
n-grams will appear,
SO these tensors are 8 | 9|10 1
sparse 10 6 | 11 1
6 | 11| 12 1

TENNESSEE [ §

KNOXVILLE




HaCOO vs COO

. A document tensor’s modes grows with the size of the vocabulary
— COO must spend an increasing amount of time searching if the
n-gram/index already exists
— Additional time to do an in-order insert

. HaCOO can spend a constant amount of time to insert




Num | Document Information

Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A

C f C 1 symbolic representation of time series, with implications for
o n e re n ce o rp u s streaming algorithms. In Proc. DMKD 2003, pages 211. ACM Press, 2003.

Andreas Schlapbach and Horst Bunke. Using hmm

2 based recognizers for writer identication and

5 pa pe rS On ha ndwritten d ig it verication. In Proc. FHR 2004, pages 167172. IEEE, 2004.
re Cog N iti On Yusuke Manabe and Basabi Chakraborty. Identity

3 | detection from on-line handwriting time series. In Proc.

2 papers on unre lated to P ICS SMCia 2008, pages 365370. IEEE, 2008.

Sami Gazzah and Najoua Ben Amara. Arabic

handwriting texture analysis for writer identication

using the dwt-lifting scheme. In Proc. ICDAR 2007,

45,152 words total pages 11331137, IEEE, 2007.
5 236 un |q ue words Kolda, Tamara Gibson. Multilinear operators for higher-order

Cx

decompositions. 2006
Blei, David M and Ng, Andrew Y and Jordan, Michael 1. Latent
dirichlet allocation. 2007

Serfas, Doug. Dynamic Biometric Recognition of Handwritten Digits
7§ Using Symbolic Aggregate Approximation. Proceedings of the ACM
Southeast Conference 2017

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Num | Document Information
S h k C “Hamlet, Prince of Denmark by William Shakespeare.”
a es pe a re O rp u s 1 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1524.
Accessed 10 July 2023.
*Julius Caesar by William Shakespeare.”
7 WO rkS by Wl”lam Shakes pea re 2 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1522.
Accessed 10 July 2023.
“Macbeth by William Shakespeare.”
3 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1533.

181,760 words total Accessed 10 July 2023,

*A Midsummer Night’s Dream by William Shakespeare.”

I 4 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1514.
1 5’203 unlque Words Accessed 10 July 2023. : /
“Othello, the Moor of Venice by William Shakespeare.”
Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1531.
Accessed 10 July 2023.
“The Tragedy of Romeo and Juliet by William Shakespeare.”
6 | Project Gutenberg, Nov. 1997, www.gutenberg.org/ebooks/1112.
Accessed 10 July 2023.
“Twelfth Night; Or, What You Will by William Shakespeare.”
7 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1526.
Accessed 10 July 2023.

X

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Setup

MATLAB scripts to build a vocabulary and build document tensors
(Appendix B)

Time how long to build and decompose all document tensors using
CP-ALS (50 components)

— constrained and unconstrained vocabularies

HaCOO: Initial number of buckets was specified to be 1,048,576, or 2%°

TENNESSEE [ §

KNOXVILLE



Results

. Conference corpus
— 44-49% reduction in both wall-clock and CPU time for both the constrained
and unconstrained cases

. Shakespeare corpus
— Constrained:
« ~14% decrease in wall-clock time
 ~32% decrease in CPU time
— Unconstrained:
« ~72% decrease in wall-clock time
« ~78% decrease in CPU time




Results - Conference Corpus

Average wall-clock time required to build and decompose all
document tensors for the Conference corpus using CP-ALS

B HaCcoO |W COO

40.00 3528

33.18

30.00

20.00

seconds

10.00

0.00

constrained unconstrained

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Results - Conference Corpus

Average CPU time required to build and decompose all
document tensors for the Conference corpus using CP-ALS

@ HaCOoO |H COO
80.00

58.35

55.93

60.00

40.00

seconds

20.00

0.00

constrained unconstrained

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Results - Shakespeare Corpus

Average wall-clock time required to build all document tensors
for the Shakespeare corpus and compute CP-ALS

M HaCoO | COO

250.00
199.78
200.00
150.00
100.00
49.24 57.33
0.00
constrained unconstrained

vocabulary

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Results - Shakespeare Corpus

Average CPU time required to build all document tensors for the
Shakespeare corpus and compute CP-ALS

seconds

400.00

300.00

200.00

100.00

0.00

M HaCoO | COO

287.85

217.50

constrained unconstrained

vocabulary

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Conclusions

* How to store large, sparse, high-dimensional data”
*Many common sparse tensor storage formats do not allow tensor
updates

« HaCOO format benefits:

— constant time insertion and retrieval

— MATLAB class to interface with Tensor Toolbox for additional tensor
operations without requiring additional hardware or environment setup

TENNESSEE [ §

KNOXVILLE



Conclusions

. HaCOO outperformed COO format in terms of tensor updates once
the number of elements reached a specific threshold.

. CP-ALS was comparable, due to HaCOO’s MTTRKP operation
incurs a small amount of overhead from extracting tensor elements

from the hash table

TENNESSEE [ §

KNOXVILLE



Future Goals

. MATLAB code clean-up

. What tensor properties contribute to a higher collision rate?
. Further improve hash function

. Workshop on Sparse Tensor Computations

— University of lllinois Urbana-Champaign

— QOctober 2023

. Journal article to ACM-TOMS




Q&A

Thank you for your time!



References

1.

Choi, Jee, et al. "“Blocking Optimization Strategies for Sparse Tensor
Computation.” SIAM, July 2017,
chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://users.wfu.edu/balla
rd/SIAM-AN17/choi.pdf.

Hastad, J. (1990). Tensor rank is np-complete. Journal of Algorithms,
11(4):644-654.

Helal, et al. ALTO: Adaptive Linearized Storage of Sparse Tensors. June 2021,
https://doi.org/10.1145/3447818.3461703. Accessed 19 July 2023.

Kolda, Tamara G., and Brett W. Bader. “Tensor Decompositions and
Applications.” SIAM Review, Society for Industrial and Applied Mathematics,
2009, https://epubs.siam.org/doi/10.1137/07070111X.

Li, Jiajia, et al. “HICOO: Hierarchical Storage of Sparse Tensors.” IEEE Xplore,
Nov. 2018, https://ieeexplore.ieee.org/abstract/document/8665782.




References

6.

Lowe, Robert, and Michael V. Berry. Using Non-Negative Tensor Decomposition

for Unsupervised Textual Influence Modeling. Sept. 2019,

https://doi.org/10. 1007/978 3-030-22475-2 4. Accessed 19 July 2023

Lowe, Robert, et al. “Hashed-Coordinate Storage of Sparse Tensors.”

Hashed-Coordinate Storage of Sparse Tensors, Nov. 2021,

https://sc21.supercomputing.org/proceedings/tech_poster/tech _poster pages/rp

0st108.html.

“MacBook pro (Retina, 13-Inch, Late 2013) - Technical Specifications.”

ﬁ\plpl%:%n, 2013, support.apple.com/kb/sp6917?locale=en_US. Accessed 17
uly .

‘I‘Measure the Performance of Your Code.” Mathworks.com, The MathWorks,
nc.,

www.mathworks.com/help/matlab/matlab _prog/measure-performance-of-your-p

rogram.html. Accessed 17 July 2023.

TENNESSEE [ §

KNOXVILLE



https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost108.html
https://sc21.supercomputing.org/proceedings/tech_poster/tech_poster_pages/rpost108.html

References

10. Smith, Shaden, et al. “FROSTT: The Formidable Repository of Open Sparse
Tensors and Tools.” Frostt.io, 2017, frostt.io/. Accessed 17 July 2023.

11. Smith, Shaden, et al. “SPLATT: Efficient and Parallel Sparse Tensor-Matrix
Multiplication.” IEEE Xplore, May 2015,
https://ieeexplore.ieee.org/abstract/document/7161496/7?casa_token=19Se-TW
P4iIAAAAAA%3ANWsOkFJgOzg-cIXzamHuUUTZ DnMGqVwdGBSEoOEYyKGSF2L
0 CaZNnqCxsKEjaxBUvCwP80nhVow.

12. “Tensor Toolbox for MATLAB.” Tensortoolbox.org, 2023,
www.tensortoolbox.org/index.html. Accessed 18 July 2023.




