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Motivation

* Many important application domains produce and manipulate
massive amounts of high-dimensional data

* This data can also be sparse
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Motivation

- For sparse tensors, we want to reduce storage requirements and
eliminate meaningless computations on 0 values.

» Challenge: How do we effectively store and compute using high
dimensional data?
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Background

* A tensor is an n-way array

*Each way is referred to as a
mode

* The number of modes
determines a tensor’s order

Fef_ J

A third-order tensor




Background
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(a) Mode-1 (column) fibers: x.;x (b) Mode-2 (row) fibers: x;.x (c) Mode-3 (tube) fibers: x;;.
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Background
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(a) Horizontal slices: X;.. (b) Lateral slices: X.;. (c) Frontal slices: X..p (or X})
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Background

« Atensor can be unfolded, or matricized along any of its modes

« X(n)is a matricized tensor unfolded along the n” mode and is
composed of mode-n fibers.
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Background

The Kronecker product of matrices A € R’*’ and B ¢ R¥*!is denoted
by A ® B, which results in a (1J) x (KL) matrix:

CL11B (llzB (11,]B

an1B a»xB ... ay/B
A 2 B — 21 22 2J
CL[1B CL[QB B a]_]B

:[al®b1 a;®bs a;®bsy ... a; by 4 a.]®bL]




Background

The Khatri-Rao product is defined in terms of the Kronecker product.
The Khatri-Rao product of matrices A*/and BMxJ is denoted by

A © B, where the resulting matrix is (IM) x J.

A@B:[a1®b1,a2®b2,...,an®bn]




Canonical Polyadic Decomposition (CPD)

» Goal: approximate a mode-N tensor X as the sum of R rank-1 tensors

Data Low-Rank Model
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Canonical Polyadic Decomposition (CPD)

* An n-way tensor is rank-1 if it can be written as the outer product of n
vectors
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Canonical Polyadic Decomposition (CPD)

For the 3-way case...

. Given 3 vectors:
acR", beR" ceRP

- Their outer product is:

X =aoboc e R™"*P .
/ b
= y

- Each entry is given by: = =2t

z(1, 4, k) = a(i)b(j)c(k)




Canonical Polyadic Decomposition (CPD)

Let X € RI*IXE pe a three-way tensor.

Compute a CP decomposition with R components that best
approximates X, i.e., to find:

R
min |X — X| with X = Z ay: @ by 916, =|[ A, B, O],
% pe=1 1

Factor matrices
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Canonical Polyadic Decomposition (CPD)

Decompose 3-way tensor x ¢ RIX/*K into 3 factor matrices:
IxR J xR KxR
Ae R Be RV C e RS

The following produces approximate matricizations of the original tensor:
X1y ~A(CoOB)',
X(Q) ~ B(C @ A)T,
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Canonical Polyadic Decomposition (CPD)

To compute CP, we will use the Alternating Least Squares (ALS)
method.

Method:

e Fix matrix B and C and solve for matrix A
e Fix A and C to solve for B

e Fix A and B to solve for C
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Canonical Polyadic Decomposition (CPD)

For example:

Matrices B and C are fixed, solve for A.
A =min || X4 — A(COB)" |k

- The optimal solution is given by:

A =Xy[(CoB)']
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Canonical Polyadic Decomposition (CPD)

- The following form is preferred:
A =X, (CoB)(C'CxB'B)!

. Only need to calculate the pseudoinverse of an R x R matrix,
instead of a (JK) x R matrix
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Canonical Polyadic Decomposition (CPD)

CP-ALS:

repeat Matricized Tensor Times Khatri-Rao Product (MTTKRP)

A =y(CoB)C'CxB'B)!
B=X3(Co®A)(CT'CxATA)
C=X3BoA)(B'BxATA)!

until maximum number of iterations are reached or error less than ¢

end




MTTKRP

Algorithm 1: MTTKRP via Sparse Tensor-Vector products [23]
Input: indI[M], indJ[M], ind K|M], vals[M| dense matrices B/*f CHE*E
Output: dense matrix M/*#
for f=0to F' do
for z=0 to M do
| t[2] = vals[z] *x B(indJ[2], f) * C(indK 2], f) ;
end
for z=0 to M do
| M(indI[2], f) = M(indI[2], f) + t[2] ;

end

w I o Gt bk W N =

end
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Datasets

- Retrieved from FROSTT, Formidable Repository of Open Sparse
Tensors and Tools

- Publicly available collection of sparse tensor datasets to facilitate
reproducible results




Datasets

- Uber tensor: data on Uber pickups in New York City

- NELL-2 tensor: a smaller version of NELL-1, which is pulled from
the Never Ending Language Learner knowledge base, part of a
machine learning project from Carnegie Mellon University.

- Enron tensor: email data that was publicly released during an
investigation by the Federal Energy Regulatory Commission




Datasets

. Chicago tensor: crime reports in the city of Chicago

- Nips tensor: publications from the NeurlPS Conference on Neural
Information Processing Systems.

- LBNL tensor: anonymized internal network traffic from Lawrence
Berkeley National Laboratory (LBNL).
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Datasets

tensor M dimensions storage
uber 3.3M 183 x 24 x L.IK x 1.7TK 52.9 MB
nell-2 76.9M 12.1K x 9.2K x 28.8K 1.51 GB
enron | 54.2M 6K x 5.7K x 1.2K 1.2 GE
chicago | 5.3M 6.2K x 24. % TT % 32 80 MB
nips 3.1M 28K x 29K % 14K % 17 58.9 MB
Ibnl 1.7/M  1.6K x 4.2K x 1.6K x 4.2K x 868.1K 55.1 MB




Sparse Tensor Storage Formats

* Can be roughly grouped into list, block, or tree structures
* Dates range from 2009-2021




Sparse Tensor Storage Formats

_ i j k val

* Coordinate (COO) format cTolo B
— Kolda and Bader, 2009 0[1]0 |2
— Stores elements in a list 1({0]0]3
— “Standard” sparse tensor storage format 11ol214
— Sorted or unsorted >l110ls
21212 1|6

3101117

313(218
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Sparse Tensor Storage Formats

*Compressed Sparse Fiber (CSF)
format |
— Smith and Karypis, 2015

— Tree-based format
— Mode-specific HOJOROXOXOXOROJE

SPLATT

(The Surprisingly ParalleL spArse Tensor : @ @ @ @ @ @ @ @
Toolkit) vl ‘ . . “ . .‘
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Sparse Tensor Storage Formats

* Hierarchical Coordinate bptr  bi bj bk ei e ek val
(HICOO) format o oo ofo|[o]o] 1
— Block-based format
— Smaller space to search within o (50 ]] ©F .
blocks B2 | 3 |00 1|1f[0]|2]|a
- %rré?cl)lreerindices meanslessbits . T2 T1Tol ol 21 1|0 BE
ParTl! S e B
(A Parallel Tensor Infrastructure!) B4 | 6 |1|1[1]|2|2]|2] 66
5 3 2 8




Sparse Tensor Storage Formats

- Adaptive Linearized Storage of , gg” ™ S I s
Sparse Tensors (ALTO) o [l e % ®

o H e I aI et- aI y 202 1 0 . --------------------------- ALTO Tensor

— Uses bit encoding to order ST ege | olo000m0)
indexes along a line © 0101 g g0 wl | T | 2leoom
00 00 """""" X1,0,0 4 (000100)
. IR Eion 12 (001100)
ALTO |Ibral'y i o . ---------------------- . X210 34 (100010)
. 10 . """""""""""""""""""""""""" X222 56 (111000)
1 . _____________________ o . __________________ p— Yoo 37 (100101)
k=1 s /:}":: ------------ X5 62 (111110)
@ T (©)
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Why another format?

- Many existing formats:
— rely on spatial locality of non-zero elements (HICOO, CSF)

— do not have a method to insert new tensor values (ALTO, CSF, HICOQ)

Why MATLAB?

- Tensor Toolbox
. Common application that is easily accessible




Hashed Coordinate Format (HaCOO)

* Developed by Robert Lowe, et. al. (2021)

» Separate chaining hash table to store tensor indices and values
— Uses a low-collision hash function to map indexes into slots within the table
— Amortized O(1) insertion, update, and retrieval
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&

morton val

HaCOO format _Towom .
111000 | 6 2
g kol e val 3
o|lo|o]1 000000 1 | -
o|l1]|o B 000010 - .- >
1{o]o 8 100001 3 |t :
1 0 2 4 | Converteachindexto| 001010 4 ---Li_ ;
5 1 1ols Morton code N SOt 5 "_j i ‘\,‘(‘\\ ’/""" 111011 8 8
el s | 001010
SAED 111000 L e 001010 | 5 ’
ALAEY 001101 7 L T
1312188 111011 8 [T 11
- 1L e 001101 | 7 12
|t 13
\ 14
Ny, B 000010 | 2 i
Apply Teilissione = | toooot ]
at-a-Time Hash > 16
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Hashed Coordinate Format (HaCOO)

* Determine hash values

Algorithm 3: Hash Values
Input: number of buckets in hash table nbuckets

Output: sz, sy, sz, mask
1 bits = log, (nbuckels)
2 st = ceil(bits / 8) — 1
3 sy =41 =% sx-1
4 sz = ceil(bits / 2) — 1

5 mask = nbuckets-1
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Hashed Coordinate Format (HaCOO)

« Jenkins One-at-a-Time Hash

Algorithm 4: Hash Algorithm
Input: list of non-zero integers index

Output: morton value m, hash key k

1 m = morton(index)

2 hash = hash + hash < sx
3 hash = hash ©hash > sy

a hash = hash + hash < sz

5 k = hash & mask
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Hashed Coordinate Format (HaCOO)

Example:

idx | morton | step 2 | step 3 step 4 k
0, 0, 0 | 000000 | 0000000 | 0000000 | OOOOOOO0O | O
0, 1,0 | 000010 | 0000100 | 0000110 | 000011110 | 14
1, 0,0 | 000001 | 0000010 [ 0000011 | OO0O0L11L | 15
1,0,2 | 100001 | 1000010 | 1100011 | 111101111 | 15
2, 1,0 | 001010 | 0010100 | 0011110 | 010010110 | 6
2,2,2 | 111000 | 1110000 | 1001000 | 101101000 | &
3,0,11| 001101 | 0011010 | 0010111 | OO1110011 | 3
3,3,2| 111011 | 1110110 | 1001101 | 110000001 | 1
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Hashed Coordinate Format (HaCOO)

Collision Mean Median Mode Max
Tensor Rate Probe Depth Probe Depth Probe Depth Probe Depth
uber 16.43% 1.20 1 1 i
nell-2 26.45% 1.36 1 1 11
enron 37.53% 1.60 1 1 37
chicago | 57.27% 25.95 7 1 28
nips 77.31% 4.41 4 4 29
Ibnl 89.39% 9.43 1 1 2994

Hashing statistics using the original hash function.




Modified Hashing

» Can the hash function be improved?

» Original alg{orithm: |
— convert tensor index to Morton code, apply Jenkins hash

» Modified algorithm: | |
— concatenate the tensor index, apply Jenkins hash
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Modified Hashing

Collision Mean Median Mode Max
Tensor Rate Probe Depth Probe Depth Probe Depth Probe Depth
uber 17.17% £ 1 1 7
nell-2 23.87% 1.31 1 1 9
enron 17.74% 1.22 1 1 8
chicago | 26.23% 1.36 1 1 8
nips 16.40% 1.20 1 1 f
Ibnl 17.13% 1.21 1 1 7

Results using the modified hash.
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HaCOO MATLAB Class

. Create, manipulate, and perform CP decomposition on HaCOO
format tensors

- The htensor class:
— hash table, represented as a cell array
— individual cells contain a matrix of index-value tuples that have hashed into
that bucket
— locations of non-empty buckets
— modes, number of nonzero elements, maximum chain length, hash
parameters, etc.
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HaCOO MATLAB Class

- Methods to set/get/search for a tensor index, extract all
iIndexes/values, rehash

- Various class constructors:
— create a blank HaCOO tensor
— create a HaCOO tensor from COOQO tensor or text file

Additional functions to read and write HaCOO tensors from a .mat file.
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Evaluations

- How do we evaluate HaCOO vs COQO in MATLAB?

. Method: simulate “online updates” by inserting elements

. FROSTT tensors are in COO format, pre-sorted and verified to have
no duplicate entries




Evaluations

Solution: randomly shuffle the rows of the COO tensor and insert
nonzeros one at a time

- Accumulate the time required to insert an element
. Compare wall-clock and CPU time

Building a new COO tensor took days!
- Limit the number of inserted elements to the first n entries
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Evaluations

Setup:

: ple MacBook Pro (late 2013_)\3
. 2.4 GHz Dual-Core Intel Core i5 processor
- 128 GB and 4 GB of 1600MHz DDR3L onboard memory

MATLAB functions:

- tic/toc to measure elapsed time
. cputime to measure total CPU time (summed across threads)

Reported times are averaged over 10 trials
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Updating FROSTT Tensors

- HaCOO format began to consistently outperform COO once the
number of elements inserted reached 25,000.

- Inserting 100,000 random elements from the Uber tensor using
HaCOO format yielded around 91-93% reduction in both cumulative
wall-clock and CPU time compared to COO format
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Updating FROSTT Tensors

Average wall-clock time required to insert 25,000 elements

B COoO0 | HaCo0O0

25.00
20.72

19.57

20.00

15.00

10.00

seconds

5.00

0.00
uber nell-2 enron chicago nips lbnl

tensor
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Updating FROSTT Tensors

Average CPU time required to insert 25,000 elements

B COoO0 | HaCoO
40.00

30.00 27.28

20.00

seconds

10.00

0.00
uber nell-2 enron chicago nips lbnl

tensor
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Updating FROSTT Tensors

Average wall-clock time required to insert 100,000 elements
B Co0O | HaCO0O
400.00

345.84

300.00

200.00

seconds

100.00

0.00
uber nell-2 enron chicago nips Ibnl

tensor
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Updating FROSTT Tensors

Average CPU time required to insert 100,000 elements

M CoO0 W HaCo0O0
500.00

42376

400.00

300.00

200.00

seconds

100.00

0.00
uber nell-2 enron chicago nips Ibnl

tensor
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Evaluations

Average wall-clock time and CPU time percent decrease to
insert n elements into the Uber tensor using HaCOO vs COO

@ wall-clocktime percent decrease -~ Trendline for wall-clock time percent decrease
A CPUtime percentdecrease ~ Trendline for CPU time percent decrease

150

@ 100 - —
g ’/‘_ — ”“"" ‘
3 A __— g
£ B
L 50 /,f"/ -
5 A
o et g

// />

0 LL ~
0 50000 100000
n
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Evaluations - MTTRKP

- MTTRKP is typically the main bottleneck of CP decomposition

A =(X;)(C®B)C'C +xB'B)"

. HaCOO method:

— extract all elements from nonempty cells from the hash table

- Time and report averages to compute MTTKRP over every mode
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Evaluations - MTTRKP

. On average, HaCOOQO'’s current MTTRKP method incurs around
26.78% increase in time

- Largest increase observed was over mode 4 of the Chicago tensor
— 77.88% increase in time to complete

— Maximum difference in elapsed time over any mode was slightly over 4
seconds

TENNESSEE [ §

KNOXVILLE



Average wall-clock time required to calculate MTTKRP over all modes

B mode1 [ mode2 | mode3 [ moded4 [ mode5
40.00

30.00 -

20.00

seconds

Avg: 8.88
10.00 -

Avg: 3.64 Avg:3.79

0.00

CO0 HaCOO COO HaCOO CO0 HaCOO CO0O HaCOO
uber chicago nips Ibnl

tensor
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Average CPU time required to calculate MTTKRP over all modes

B mode1 [ mode2 | mode3 [ mode4 [ mode5
300.00 -

200.00

seconds

100.00 - Avg: 76.81

Avg: 59.41 ’
Avg:49.13 Avg:4526 o Avg:48.57 Avg:47.00 Avg:82!13 Avg: 84.69

0.00

CO0 HaCOO COO HaCOO COO = HaCOO COO HaCOO
uber chicago nips Ibnl

tensor
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Text Analysis Application

- Textual Influence model by Lowe (2018)

. Goal:

— Use sparse tensor decomposition to measure the weight of influence a
written document exerts on a target work

First step is to convert all documents into tensors.




Representing Documents as Tensors

Sample document:

The cat jumped on the couch. He yvawned and stretched. Then he fell asleep.

1 | the 7 | vawned

2 | cat 8 | and

3 | jumped | 9 | stretched
4 | on 10 | then

couch 11 | fell

(6 ¢

Index vocabulary: 6 | he 15 | asleep
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Representing Documents as Tensors

e | | Gmmed ] e TR p——
e | st | meed | e | Be | i
the | et [Jumped [ _on | the ] coueh
the | et | jumped

Counting n-grams using a sliding window




Representing Documents as Tensors

The cat jumped on the couch. He yawned and stretched. Then he fell asleep.
1, 2, 3 | the cat jumped 6,7 8 he yawned and
1 | the 7 | yawned
9 | cat 8 | and 2, 3,4 | cat jumped on 7, 8,9 vawned and stretched
3 | jumped | 9 | stretched 3.4, 1 | jumped on the 8,9, 10 | and stretched then
4 | on 10 | then 4.1, 5 | on the couch 9, 10, 6 | stretched then he
D | couch | 11 ] fell 1,5, 6 | the couch he 10, 6, 11 | then he fell
6 | he 12 | asleep 5, 6, 7 | couch he vawned | 6, 11, 12 | he fell asleep

List of n-grams with corresponding indices
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Representing Documents as Tensors

k 1
Unsorted document i % ; Value
tensor
2| 3| 4 1
3141 1
- None of the n-grams 111 T3 1
repeated, so values
are 1 1 | 5| 6 1
5| 6 | 7 1
. 6 | 7 | 8 1
Not all possible =T 515 .
n-grams will appear,
SO these tensors are 8 | 9|10 1
sparse 10 6 | 11 1
6 | 11| 12 1

TENNESSEE [ §

KNOXVILLE




HaCOO vs COO

. A document tensor’s modes grows with the size of the vocabulary
— COO must spend an increasing amount of time searching if the
n-gram/index already exists
— Additional time to do an in-order insert

. HaCOO can spend a constant amount of time to insert




Num | Document Information

Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A

C f C 1 symbolic representation of time series, with implications for
o n e re n ce o rp u s streaming algorithms. In Proc. DMKD 2003, pages 211. ACM Press, 2003.

Andreas Schlapbach and Horst Bunke. Using hmm

2 based recognizers for writer identication and

5 pa pe rS On ha ndwritten d ig it verication. In Proc. FHR 2004, pages 167172. IEEE, 2004.
re Cog N iti On Yusuke Manabe and Basabi Chakraborty. Identity

3 | detection from on-line handwriting time series. In Proc.

2 papers on unre lated to P ICS SMCia 2008, pages 365370. IEEE, 2008.

Sami Gazzah and Najoua Ben Amara. Arabic

handwriting texture analysis for writer identication

using the dwt-lifting scheme. In Proc. ICDAR 2007,

45,152 words total pages 11331137, IEEE, 2007.
5 236 un |q ue words Kolda, Tamara Gibson. Multilinear operators for higher-order

Cx

decompositions. 2006
Blei, David M and Ng, Andrew Y and Jordan, Michael 1. Latent
dirichlet allocation. 2007

Serfas, Doug. Dynamic Biometric Recognition of Handwritten Digits
7§ Using Symbolic Aggregate Approximation. Proceedings of the ACM
Southeast Conference 2017
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Num | Document Information
S h k C “Hamlet, Prince of Denmark by William Shakespeare.”
a es pe a re O rp u s 1 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1524.
Accessed 10 July 2023.
*Julius Caesar by William Shakespeare.”
7 WO rkS by Wl”lam Shakes pea re 2 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1522.
Accessed 10 July 2023.
“Macbeth by William Shakespeare.”
3 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1533.

181,760 words total Accessed 10 July 2023,

*A Midsummer Night’s Dream by William Shakespeare.”

I 4 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1514.
1 5’203 unlque Words Accessed 10 July 2023. : /
“Othello, the Moor of Venice by William Shakespeare.”
Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1531.
Accessed 10 July 2023.
“The Tragedy of Romeo and Juliet by William Shakespeare.”
6 | Project Gutenberg, Nov. 1997, www.gutenberg.org/ebooks/1112.
Accessed 10 July 2023.
“Twelfth Night; Or, What You Will by William Shakespeare.”
7 | Project Gutenberg, Nov. 1998, www.gutenberg.org/ebooks/1526.
Accessed 10 July 2023.

X

THE UNIVERSITY OF

TENNESSEE [ §

KNOXVILLE




Setup

MATLAB scripts to build a vocabulary and build document tensors
(Appendix B)

Time how long to build and decompose all document tensors using
CP-ALS (50 components)

— constrained and unconstrained vocabularies

HaCOO: Initial number of buckets was specified to be 1,048,576, or 2%°
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Results

. Conference corpus
— 44-49% reduction in both wall-clock and CPU time for both the constrained
and unconstrained cases

. Shakespeare corpus
— Constrained:
« ~14% decrease in wall-clock time
 ~32% decrease in CPU time
— Unconstrained:
« ~72% decrease in wall-clock time
« ~78% decrease in CPU time




Results - Conference Corpus

Average wall-clock time required to build and decompose all
document tensors for the Conference corpus using CP-ALS

B HaCcoO |W COO

40.00 3528

33.18

30.00

20.00

seconds

10.00

0.00

constrained unconstrained
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Results - Conference Corpus

Average CPU time required to build and decompose all
document tensors for the Conference corpus using CP-ALS

@ HaCOoO |H COO
80.00

58.35

55.93

60.00

40.00

seconds

20.00

0.00

constrained unconstrained
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Results - Shakespeare Corpus

Average wall-clock time required to build all document tensors
for the Shakespeare corpus and compute CP-ALS

M HaCoO | COO

250.00
199.78
200.00
150.00
100.00
49.24 57.33
0.00
constrained unconstrained

vocabulary
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Results - Shakespeare Corpus

Average CPU time required to build all document tensors for the
Shakespeare corpus and compute CP-ALS

seconds

400.00

300.00

200.00

100.00

0.00

M HaCoO | COO

287.85

217.50

constrained unconstrained

vocabulary
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Conclusions

* How to store large, sparse, high-dimensional data”
*Many common sparse tensor storage formats do not allow tensor
updates

« HaCOO format benefits:

— constant time insertion and retrieval

— MATLAB class to interface with Tensor Toolbox for additional tensor
operations without requiring additional hardware or environment setup
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Conclusions

. HaCOO outperformed COO format in terms of tensor updates once
the number of elements reached a specific threshold.

. CP-ALS was comparable, due to HaCOO’s MTTRKP operation
incurs a small amount of overhead from extracting tensor elements

from the hash table
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Future Goals

. MATLAB code clean-up

. What tensor properties contribute to a higher collision rate?
. Further improve hash function

. Workshop on Sparse Tensor Computations

— University of lllinois Urbana-Champaign

— QOctober 2023

. Journal article to ACM-TOMS




Q&A

Thank you for your time!
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