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Motivation
• Many important application domains produce and manipulate 
massive amounts of high-dimensional data

• This data can also be sparse

Source: Laukemann, 2021



Motivation
● For sparse tensors, we want to reduce storage requirements and 

eliminate meaningless computations on 0 values.

•  Challenge: How do we effectively store and compute using high 
dimensional data?



Background
• A tensor is an n-way array

• Each way is referred to as a  
mode

• The number of modes 
determines a tensor’s order

A third-order tensor

Source: [4]
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Background
• A tensor can be unfolded, or matricized along any of its modes

•         is a matricized tensor unfolded along the nth mode and is 
composed of mode-n fibers.



Background

Frontal slices:



Background



Background
The Kronecker product of matrices    and is denoted 
by    , which results in a (IJ) x  (KL) matrix:



Background
The Khatri-Rao product is defined in terms of the Kronecker product. 
The Khatri-Rao product of matrices   and    is denoted by 

  , where the resulting matrix is (IM) x J.



Canonical Polyadic Decomposition (CPD)
• Goal: approximate a mode-N tensor X as the sum of R rank-1 tensors

Data Low-Rank Model



Canonical Polyadic Decomposition (CPD)
• An n-way tensor is rank-1 if it can be written as the outer product of n 
vectors



Canonical Polyadic Decomposition (CPD)
For the 3-way case…
• Given 3 vectors:

• Their outer product is:

• Each entry is given by:



Canonical Polyadic Decomposition (CPD)

Let   be a three-way tensor.

Compute a CP decomposition with R components that best 
approximates     , i.e., to find: 

Factor matrices



Canonical Polyadic Decomposition (CPD)
Decompose 3-way tensor                       into 3 factor matrices:

The following produces approximate matricizations of the original tensor:



Canonical Polyadic Decomposition (CPD)

To compute CP,  we will use the Alternating Least Squares (ALS) 
method.

Method:
● Fix matrix B and C and solve for matrix A
● Fix A and C to solve for B
● Fix A and B to solve for C



Canonical Polyadic Decomposition (CPD)
For example:

Matrices B and C are fixed, solve for A.

• The optimal solution is given by:



Canonical Polyadic Decomposition (CPD)

• The following form is preferred:

• Only need to calculate the pseudoinverse of an R x R matrix, 
instead of a (JK) x R matrix



Canonical Polyadic Decomposition (CPD)
CP-ALS:

repeat

until maximum number of iterations are reached or error less than ε
end

Matricized Tensor Times Khatri-Rao Product (MTTKRP)



MTTKRP

Source: [11]



• Retrieved from FROSTT, Formidable Repository of Open Sparse 
Tensors and Tools

• Publicly available collection of sparse tensor datasets to facilitate 
reproducible results

Datasets

Source: [10]



• Uber tensor: data on Uber pickups in New York City

• NELL-2 tensor: a smaller version of NELL-1, which is pulled from 
the Never Ending Language Learner knowledge base, part of a 
machine learning project from Carnegie Mellon University. 

• Enron tensor: email data that was publicly released during an 
investigation by the Federal Energy Regulatory Commission

Datasets



• Chicago tensor: crime reports in the city of Chicago

• Nips tensor: publications from the NeurIPS Conference on Neural 
Information Processing Systems.

•  LBNL tensor: anonymized internal network traffic from Lawrence 
Berkeley National Laboratory (LBNL).

Datasets



Datasets



Sparse Tensor Storage Formats
• Can be roughly grouped into list, block, or tree structures
• Dates range from 2009-2021



•Coordinate (COO) format

— Kolda and Bader, 2009
— Stores elements in a list
— “Standard” sparse tensor storage format
— Sorted or unsorted

Sparse Tensor Storage Formats

Source: [4]



•Compressed Sparse Fiber (CSF) 
format
— Smith and Karypis, 2015
— Tree-based format
— Mode-specific

SPLATT 

(The Surprisingly ParalleL spArse Tensor 
Toolkit)

Sparse Tensor Storage Formats

Source: [11]



•Hierarchical Coordinate 
(HiCOO) format
— Li et al., 2018
— Block-based format
— Smaller space to search within 

blocks
— Smaller indices means less bits 

to store
ParTI! 
(A Parallel Tensor Infrastructure!)

Source: [5]

Sparse Tensor Storage Formats



•Adaptive Linearized Storage of 
Sparse Tensors (ALTO)
— Helal et. al, 2021
— Uses bit encoding to order 

indexes along a line
ALTO library

Source: [3]

Sparse Tensor Storage Formats



Why another format?
• Many existing formats:
— rely on spatial locality of non-zero elements (HiCOO, CSF)

— do not have a method to insert new tensor values (ALTO, CSF, HiCOO)

Why MATLAB?
• Tensor Toolbox
• Common application that is easily accessible

Source: [12]



Hashed Coordinate Format (HaCOO)
•Developed by Robert Lowe, et. al. (2021)

•Separate chaining hash table to store tensor indices and values 
— Uses a low-collision hash function to map indexes into slots within the table
— Amortized O(1) insertion, update, and retrieval

Source: [7]



HaCOO format



Hashed Coordinate Format (HaCOO)
•Determine hash values



Hashed Coordinate Format (HaCOO)
• Jenkins One-at-a-Time Hash



Hashed Coordinate Format (HaCOO)
Example:



Hashed Coordinate Format (HaCOO)

Hashing statistics using the original hash function.



Modified Hashing
•Can the hash function be improved?

•Original algorithm:
— convert tensor index to Morton code, apply Jenkins hash

• Modified algorithm:
— concatenate the tensor index, apply Jenkins hash



Modified Hashing

Results using the modified hash.



HaCOO MATLAB Class
• Create, manipulate, and perform CP decomposition on HaCOO 

format tensors

• The htensor class:
— hash table, represented as a cell array
— individual cells contain a matrix of index-value tuples that have hashed into 

that bucket
— locations of non-empty buckets
— modes, number of nonzero elements, maximum chain length, hash 

parameters, etc.



HaCOO MATLAB Class

• Methods to set/get/search for a tensor index, extract all 
indexes/values, rehash

• Various class constructors:
— create a blank HaCOO tensor  
— create a HaCOO tensor from COO tensor or text file

Additional functions to read and write HaCOO tensors from a .mat file.



Evaluations
• How do we evaluate HaCOO vs COO in MATLAB?

• Method: simulate “online updates” by inserting elements

• FROSTT tensors are in COO format, pre-sorted and verified to have 
no duplicate entries



Solution: randomly shuffle the rows of the COO tensor and insert 
nonzeros one at a time

• Accumulate the time required to insert an element
• Compare wall-clock and CPU time

Building a new COO tensor took days!
• Limit the number of inserted elements to the first n entries

Evaluations



Evaluations
Setup:

• Apple MacBook Pro (late 2013)
• 2.4 GHz Dual-Core Intel Core i5 processor 
• 128 GB and 4 GB of 1600MHz DDR3L onboard memory

MATLAB functions:
• tic/toc to measure elapsed time
• cputime to measure total CPU time (summed across threads)

Reported times are averaged over 10 trials

Source: [8],[9]



Updating FROSTT Tensors
• HaCOO format began to consistently outperform COO once the 

number of elements inserted reached 25,000.

• Inserting 100,000 random elements from the Uber tensor using 
HaCOO format yielded around 91-93% reduction in both cumulative 
wall-clock and CPU time compared to COO format



Updating FROSTT Tensors



Updating FROSTT Tensors



Updating FROSTT Tensors



Updating FROSTT Tensors



Evaluations



• MTTRKP is typically the main bottleneck of CP decomposition

• HaCOO method:
— extract all elements from nonempty cells from the hash table 

• Time and report averages to compute MTTKRP over every mode

Evaluations - MTTRKP



• On average, HaCOO’s current MTTRKP method incurs around 
26.78% increase in time

• Largest increase observed was over mode 4 of the Chicago tensor
— 77.88% increase in time to complete
— Maximum difference in elapsed time over any mode was slightly over 4 

seconds

Evaluations - MTTRKP







Text Analysis Application
• Textual Influence model by Lowe (2018)
• Goal: 

— Use sparse tensor decomposition to measure the weight of influence a 
written document exerts on a target work

First step is to convert all documents into tensors.

Source: [6]



Representing Documents as Tensors
Sample document:

Index vocabulary:



Representing Documents as Tensors

Counting n-grams using a sliding window



Representing Documents as Tensors

List of n-grams with corresponding indices



Representing Documents as Tensors
• Unsorted document 

tensor

• None of the n-grams 
repeated, so values 
are 1

• Not all possible 
n-grams will appear, 
so these tensors are 
sparse



HaCOO vs COO
• A document tensor’s modes grows with the size of the vocabulary

— COO must spend an increasing amount of time searching if the 
n-gram/index already exists

— Additional time to do an in-order insert

• HaCOO can spend a constant amount of time to insert



Conference Corpus
5 papers on handwritten digit 
recognition
2 papers on unrelated topics

45,152 words total
5,236 unique words



Shakespeare Corpus
7 works by William Shakespeare

181,760 words total
15,203 unique words



Setup
MATLAB scripts to build a vocabulary and build document tensors 
(Appendix B)

Time how long to build and decompose all document tensors using 
CP-ALS (50 components)

— constrained and unconstrained vocabularies

HaCOO: Initial number of buckets was specified to be 1,048,576, or 220



Results
• Conference corpus

— 44-49% reduction in both wall-clock and CPU time for both the constrained 
and unconstrained cases

• Shakespeare corpus
— Constrained: 

• ~14% decrease in wall-clock time
• ~32% decrease in CPU time

— Unconstrained:
• ~72% decrease in wall-clock time
• ~78% decrease in CPU time



Results - Conference Corpus



Results - Conference Corpus



Results - Shakespeare Corpus



Results - Shakespeare Corpus



Conclusions
• How to store large, sparse, high-dimensional data?
• Many common sparse tensor storage formats do not allow tensor 
updates

• HaCOO format benefits:
— constant time insertion and retrieval

— MATLAB class to interface with Tensor Toolbox for additional tensor 
operations without requiring additional hardware or environment setup



Conclusions

• HaCOO outperformed COO format in terms of tensor updates once 
the number of elements reached a specific threshold. 

• CP-ALS was comparable, due to HaCOO’s MTTRKP operation 
incurs a small amount of overhead from extracting tensor elements 
from the hash table



Future Goals
• MATLAB code clean-up

• What tensor properties contribute to a higher collision rate?

• Further improve hash function

• Workshop on Sparse Tensor Computations
— University of Illinois Urbana-Champaign

— October 2023

• Journal article to ACM-TOMS 



Thank you for your time!

Q&A
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