
	 1	

Documentation	for	the	MIMIC-III	Dataset	Generation	Library	(MDGL)	
Ty	Vaughan	©2018		

MS/CS	PILOT	
EECS	Department,	Univ.	of	Tennessee	

INTRODUCTION	
This	report	contains	the	documentation	for	the	Mimic-III	Dataset	Generation	Library	(MDGL).		MDGL	is	an	effort	to	
both	reduce	the	effort	needed	to	quickly	obtain	patient	datasets	from	the	Mimic-III	database	and	allow	for	increased	
consistency	in	data	used	across	different	researchers.		To	further	facilitate	the	widespread	use	of	MDGL,	all	of	the	
code	has	been	written	in	the	Python	Version	2.7	language.	
	
The	report	will	consist	of	three	main	sections:	Specifications,	Library,	and	Setting	Up	and	Running.		Section	1	details	
the	specifications	that	a	user	apply	to	how	the	dataset	is	generated.		Section	2	provides	a	thorough	documentation	
of	all	code	files,	the	functions	within,	and	how	to	expand	them.		Lastly,	Section	3	covers	additional	tools	built	on	top	
of	the	MDGL,	specifically	the	feature-frequency	cluster	analysis	tool.	

SPECIFICATIONS	
The	following	section	will	describe	the	features	that	a	user	can	specify	for	generating	a	patient	dataset,	along	with	
how	the	syntax	needed	to	specify	all	features.		

SPECIFICATIONS	FILE	
All	user	specifications	should	be	created	within	a	single	file,	e.g.	Specifications.txt.	This	file	should	reside	
within	the	directory	that	contains	the	code	for	the	MDGL.		When	the	code	is	run,	it	will	search	for	the	specifications	
file	specified	by	the	user	in	the	current	directory	and	parse	it;	if	this	file	is	not	found,	an	error	will	be	thrown.		
	
If	a	user	wishes	to	store	multiple	specification	files,	this	is	not	a	problem.		When	a	patient	dataset	has	been	created,	
a	copy	of	the	specifications	file	used	to	create	that	dataset	will	be	placed	within	the	patient	dataset	directory.		This	
will	 ensure	 that	 all	 specifications	 files	 can	be	 kept	 track	 of	 and	 shared	 if	 another	 user	wishes	 to	 reproduce	 the	
generated	dataset.	

SPECIFICATIONS	FORMAT	
All	specifications	within	the	specifications	follow	must	follow	a	strict,	yet	simple,	format.		Currently,	there	are	three	
main	sections	within	the	specifications	file:	ICU	section,	patient	section,	and	the	parameter	section.		An	example	for	
how	the	specifications	file	should	look	can	be	found	in	the	Appendix.		Furthermore,	if	the	user	wishes	to	add	text	
before	or	after	the	specifications	in	the	specifications	file,	the	tags	#Begin	and	#End	can	be	used	before	and	after	
the	specifications.	
	
ICU	SECTION	
The	ICU	section	allows	a	user	to	specify	which	of	the	six	ICU	types	in	Mimic	that	they	wish	to	include	patients	from	
in	the	generated	dataset.		These	ICU	types	are	CCU,	SICU,	MICU,	NICU,	CSRU,	and	TSICU.		The	ICU	section	should	
start	with	the	line:	
	

#ICUs

In	order	to	specify	which	ICU	types	to	consider,	the	following	line	should	be	added	beneath	the	#ICUs tag:	
	

[ICU][True|False]

	 2	

where	[ICU]	is	one	of	the	six	ICU	types,	True	indicates	that	the	ICU	type	should	be	included,	and	False	indicates	
that	the	ICU	type	should	be	excluded.		Below	is	an	example	of	what	the	ICU	section	in	Specifications.txt	
may	look	like	if	a	user	wishes	to	include	ICU	types	CCU,	SICU,	MICU,	and	CSRU	and	exclude	ICU	types	NICU	and	TSICU:	
	
	
	

#ICUs	
CCU True
SICU True
MICU True
NICU False
CSRU True
TSICU False

PATIENT	SECTION	
The	patients	section	allows	a	user	to	specify	what	range	of	ages	(in	years)	and	the	sex	of	patients	that	should	be	
considered.	It	also	allows	the	user	to	specify	how	many	hours	of	an	ICU	stay	should	be	used.	The	patient	section	
should	start	with	the	line:	
	

#Patients

AGE	
To	specify	the	age	range,	the	following	line	should	be	added	beneath	the	#Patients	tag:	
	

Age; [min]; [max]

where	[min]	is	the	minimum	age	in	years	to	be	considered	and	[max]	is	the	maximum	age	in	years	to	be	considered.		
Below	is	an	example	of	how	a	user	can	specify	that	they	only	wish	to	use	patients	between	the	ages	16	and	21:	
	

Age;16;21

If	a	user	wishes	to	consider	all	ages	above	a	certain	age,	the	[max]	argument	can	simply	be	replaced	by	a	large	
enough	number,	even	one	such	as	999.		Likewise,	if	a	user	wishes	to	consider	all	ages	below	a	certain	age,	the	[min]	
argument	can	be	set	to	0.		Thus,	if	a	user	wishes	to	use	all	ages,	the	user	can	set	[min]	to	0	and	[max]	to	999.	

SEX	
To	specify	the	sex	to	be	used,	the	following	line	should	be	added	beneath	the	#Patients	tag:	
	

Sex; [sex]

where	[sex]	 is	used	to	specify	 the	gender.	 	The	argument	[sex]	can	be	set	 to	M	 to	consider	only	males,	F	 to	
consider	only	females,	or	Both	to	consider	both	males	and	females.		An	example	for	a	how	a	user	can	specify	to	use	
both	genders	is	shown	below:	
	

Sex; Both

Hours	
To	specify	how	many	hours	of	an	ICU	stay	to	use,	the	following	line	should	be	added	beneath	the	#Patients	tag:	
	

Hours; [hours]; [required]

where	[hours]	should	be	a	numerical	value	greater	than	0,	and	[required]	should	be	either	a	0	(patients	can	
have	any	number	of	hours	in	the	ICU)	or	a	1	(patients	must	have	at	least	[hours]	number	of	hours	in	the	ICU).		All	

	 3	

recorded	measurements	for	a	patient’s	ICU	stay	(across	all	included	ICU	types)	from	when	they	entered	the	ICU	up	
until	the	specified	number	of	hours	will	be	included	in	the	dataset.	
	
	
	
	
PARAMETER	SECTION	
	
The	parameters	section	allows	a	user	to	specify	which	numerical	measurements	should	be	included	in	the	dataset.		
The	measurements	will	 be	 extracted	 from	any	of	 the	CHARTEVENTS,	 LABEVENTS,	 and	OUTPUTEVENTS	 tables	 in	
Mimic.		For	each	measurement	that	should	be	included	in	the	dataset,	the	following	line	should	be	added	beneath	
the	#Parameters	tag:	
	

[name]; [description]; [[IDs]]

where	 [name]	 is	 the	 name	 or	 abbreviated	 name	 for	 the	 measurement	 that	 will	 be	 used	 to	 identify	 that	
measurement	in	the	patient	output	files,	[description]	is	the	full	name	or	text	description	of	the	measurement	
(mostly	 useful	 as	 a	 side	 note),	 and	 [IDs]	 is	 a	 comma-separated	 list	 of	 all	 Mimic	 itemids	 that	 specify	 the	
measurements	 in	the	Mimic	database.	 	An	example	for	how	a	user	can	specify	measurements	 is	provided	 in	the	
Appendix.	

	
Figure	1:	MDGL	Software	

LIBRARY	
The	 MDGL	 currently	 consists	 of	 six	 separate	 scripts:	 data_gen.py,	 data_access.py,	
patient_procesing.py,	spec_parser.py,	stat_report.py	and	PatientThreadPool.py.		Figure	
1	shows	how	these	files	are	related.	 	The	main	file	that	 is	run	is	data_gen.py,	and	the	other	files	contain	related	
functions	that	are	used	by	data_gen.py.		The	sections	below	will	list	code	dependencies,	describe	the	output,	and	
detail	the	functionality	assigned	to	each	of	the	scripts	and	any	other	related	information.	

DEPENDENCIES	&	HOW	TO	RUN	
In	order	to	use	the	MDGL,	the	psycopg2	and	numpy	 libraries	need	to	be	installed	or	placed	within	the	current	
working	directory.			
	
The	user	also	needs	access	to	an	instance	of	the	Mimic-III	database,	along	with	a	username	and	password	for	access.		
Once	these	libraries	have	been	installed	and	an	instance	of	Mimic	is	available,	the	MDGL	can	be	run	using	Python	
2.7	with	the	command:	
	

	 4	

python data_gen.py [host] [port] [specfile]

where	[host]	and	[port] refer	to	where	the	database	is	located	(if	local,	should	be	localhost 5432),	and	
[specfile]	is	the	name	of	the	user’s	specifications	file.		

	

OUTPUT	
The	output	will	be	a	directory	named	“patientfiles [YMD-HMS]”,	where	YMD-HMS	is	the	year,	month,	day,	
hour,	minute,	and	second	at	which	the	directory	will	be	created.		All	of	the	patient	files,	the	specification	file,	and	
the	report	will	be	located	in	this	directory.	
	
Regarding	the	format	of	the	patient	files,	each	line	has	the	following	format:		
	

[HH:MM], [name], [ID], [value]

where	[HH:MM]	is	the	time	based	on	the	start	of	the	stay	(potential	values	range	between	00:00	to	XX:00,	where	
XX	is	the	maximum	number	of	hours	specified	in	the	specifications	file),	[name]	is	the	name	of	the	measurement	
(see	[name]	in	the	parameters	specification	above),	[ID]	is	the	specific	item	ID	of	the	measurement	(which	maps	
the	measurement	directly	back	to	Mimic),	and	[value]	is	the	numerical	value	of	the	measurement.			
	
The	first	line	of	a	patient	file	contains	the	column	headers.	The	next	six	lines	contain	static	information	about	the	
patient,	which	includes	the	patient’s	record	ID,	age,	gender	(0	for	female,	1	for	male),	height,	ICU	type	(0	for	CCU,	1	
for	SICU,	2	for	MICU,	3	for	NICU,	4,	for	CSRU,	5	for	TSICU),	and	weight	at	ICU	admission.	All	lines	after	the	first	seven	
lines	contain	measurement	information	collected	from	the	database.	

DATA_GEN.PY	
As	mentioned	above, data_gen.py	is	the	main	file	that	should	executed.		It	initializes	certain	data	and	classes	
needed	throughout	the	patient	generation	process,	and	it	imports	the	functionality	of	the	other	files.		The	overall	
patient	generation	process	is	very	step-driven,	with	each	library	being	responsible	for	a	certain	step.	
	
This	script	will	start	by	establishing	necessary	connections	to	the	Mimic-III	database.		This	includes	setting	up	a	single	
connection	as	well	as	 initializing	an	instance	of	the	PatientThreadPool	class	that	will	set	up	connections	as	
well.	

PATIENTTHREADPOOL.PY	
This	file	contains	the	class	PatientThreadPool	that	implements	a	thread	pool	that	can	be	used	to	parallelize	
functions	 across	 all	 available	 cores,	 namely	 those	 that	 access	 the	 Mimic	 database.	 	 This	 is	 because	 the	
PatientThreadPool	class	initializes	a	database	connection	for	each	virtual	core,	allowing	each	thread	to	access	
the	Mimic	database	concurrently.		The	main	advantage	that	this	class	offers	is	to	offer	significant	speedup	through	
a	flexible	class	that	can	easily	be	expanded.	
	
The	decision	to	use	the	python	Threading	library	over	the	python	Multiprocessing	library	came	about	as	
follows.	 	When	using	the	Multiprocessing	 library,	different	 library	 imports,	such	as	numpy,	affect	 the	core	
affinity	and	cause	the	processes	to	only	run	on	a	single	core.		Furthermore,	when	using	the	Multiprocessing	
library’s	Pool	class,	that	acts	as	a	thread	pool,	it	attempts	to	split	up	the	arguments	equally	among	all	processes.		
However,	as	larger	arrays	of	data	are	passed	in,	issues	were	encountered	with	the	argument	splitting	taking	much	
too	 long	 compared	 to	what	 could	 be	 done	manually.	 	 Finally,	 it	makes	 sense	 that	 threads	 are	 used	 instead	 of	
processes	so	that	data	can	be	shared	as	needed.				
	

	 5	

One	potential	problem	with	this	approach	is	that	that	Python’s	global	interpreter	lock	can	limit	all	threads	to	work	
on	only	a	single	core.		Although	this	is	only	a	problem	in	certain	scenarios	and	does	not	affect	MDGL,	it	should	be	
kept	in	mind	in	with	future	MDGL	development.	
	
To	use	the	PatientThreadPool	class,	it	must	be	initialized	by	passing	it	the	username	and	password	necessary	
for	connecting	to	the	Mimic	database.			
	
Afterwards,	the	function	executeFunc	should	be	called,	passing	in	the	function	to	be	executed,	a	list	of	arguments	
that	all	instances	share,	and	a	list	of	arguments	that	need	to	be	split	equally	among	all	threads.		executeFunc	will	
automatically	handle	argument	splitting	and	thread	initialization	and	termination.		The	cumulative	result	from	the	
threads	can	be	accessed	by	calling	the	class	function	getResults.	
	
In	 order	 for	 a	 function	 to	 be	 called	 by	 the	 PatientThreadPool	 class,	 it	 needs	 to	 adhere	 to	 two	 simple	
specifications.			
	
First,	 it	 should	only	accept	as	 input	a	single	object.	 	This	object	will	be	 the	entire	arguments	array,	passed	 in	by	
executeFunc.		The	first	few	arguments	will	be	those	that	the	user	passed	in	args,	the	next	few	arguments	will	
be	those	that	the	user	passed	 in	through	the	split	args,	 the	second	to	 last	argument	will	be	a	reference	to	the	
thread	pool	class,	and	the	last	argument	will	be	a	database	connection	(if	needed).	
	
Second,	instead	of	returning	a	value,	it	should	acquire	the	thread	pool’s	lock,	append	its	result	to	the	thread	pool’s	
result	value,	and	then	release	the	lock	before	returning.		This	will	allow	for	all	results	to	be	accessible	once	all	threads	
have	returned.			
	
Similarly,	if	other	information	needs	to	be	shared	between	threads	for	a	process,	the	thread	pool	class	can	be	further	
expanded	upon	to	handle	such	needs.	
	
Overall,	the	thread	pool	class	allows	for	a	user	to	easily	write	a	function	that	could	be	performed	in	parallel.	

SPEC_PARSER.PY	
The	 file	 spec_parser.py	 contains	 the	 functionality	 responsible	 for	 accessing	 the	 specification	 information	
provided	 by	 the	 user	 in	 the	 specifications	 file.	 	 This	 script	 will	 search	 the	 current	 working	 directory	 for	 the	
specifications	 file,	 and	 if	 found,	 will	 return	 a	 dictionary	 of	 information	 corresponding	 to	 each	 section	 of	 the	
specifications	file	(ICUs,	Patients,	Parameters).			
	
The	specifications	parsing	is	currently	performed	by	the	function	getSpecifications.		This	function	performs	
a	line-by-line	read	through	of	the	specifications	file,	keeping	track	of	which	section	it	is	reading	information	for	and	
storing	 it.	 	 If	 invalid	 specification	 values	 are	 provided,	 the	 parser	 will	 throw	 an	 error	 corresponding	 to	 the	
specification	that	was	incorrect.		
	
If	future	sections	are	added	to	the	specifications	file	in	addition	to	the	existing	three,	it	is	very	easy	to	add	to	the	
getSpecifications	 function.	 	A	user	will	only	need	to	add	a	boolean	value	 for	determining	 if	 the	parser	 is	
within	a	section,	update	the	logic	that	sets	the	boolean	values,	and	then	add	the	line-based	parsing	logic.		Lastly,	the	
user	should	ensure	that	the	data	holding	the	parsed	information	is	returned.	
	
Currently,	the	dictionaries	for	each	section	are	returned	individually.		This	allows	for	the	calling	function	to	access	
the	specifications	for	each	section	as	a	n-way	tuple	or	individually.		

DATA_ACCESS.PY	

	 6	

The	file	data_access.py	contains	the	functionality	responsible	for	setting	up	the	SQL	queries	for	obtaining	the	
information	 from	 the	 database,	 executing	 those	 queries	 and	 retrieving	 the	 information,	 and	 returning	 that	
information	to	the	calling	process.		It	is	not,	however,	responsible	for	processing	this	information	–	only	the	retrieval.	
The	main	function	that	should	be	called	to	access	the	specified	 information	from	Mimic	 is	obtainData,	which	
should	 be	 passed	 the	 specifications	 dictionaries,	 a	 connection	 to	 Mimic,	 and	 an	 instance	 of	 the	
PatientThreadPool	class.		All	functionality	that	is	meant	to	handle	the	data	retrieved	from	the	database	should	
be	added	in	this	function.		The	returned	data	should	be	unmodified	from	the	form	stored	in	the	database,	and	will	
be	passed	to	the	data	processing	modules.	
	
The	function	obtainData	uses	two	other	functions	to	perform	its	work:		

- makeQueries	 uses	 the	 specification	 information	 to	 create	 the	 SQL	 queries	 that	 will	 fetch	 the	 data	
needed.	

- obtainMeasurements	 adheres	 to	 the	PatientThreadPool	 requirements,	 and	 is	used	 to	access	
patient	measurement	information	from	Mimic.	

	

PATIENT_PROCESSING.PY	
The	 file	patient_processing.py	 is	 responsible	 for	 all	 functionality	 that	 processes	 the	 intermediate	 data	
representation	into	the	final	representation	that	will	be	used	to	generate	the	required	files	in	the	patient	dataset.		
There	 currently	 is	 one	 function	 within	 this	 file,	 evaluatePatients,	 and	 it	 is	 the	 function	 responsible	 for	
processing	all	of	the	measurement	data	for	a	patient,	and	its	output	is	the	information	that	will	be	directly	used	to	
form	the	patient	dataset	files.		This	function	adheres	to	the	PatientThreadPool	standards.	
	
If	 a	 user/developer	wishes	 to	 add	 future	 rules	 for	 handling	 specific	measurements,	 this	 functionality	 should	 be	
handled	 within	 this	 file.	 	 For	 example,	 the	 specific	 handling	 of	Mechanical	 Ventilation	 is	 performed	within	 the	
function	handleMechVent,	which	is	located	in	patient_processing.py	and	is	called	within	the	function	
evaluatePatients.		This	function	will	replace	the	value	of	a	mechanical	ventilation	event	with	0.0	if	there	is	no	
ventilation	in	use,	1.0	if	ventilation	is	in	use,	and	2.0	if	ventilation	is	ending.		Another	example	is	handleTroponin,	
which	interprets	inequalities	used	to	represent	very	high	or	low	Troponin	measurements.	
	
As	mentioned,	all	processing	of	data	should	be	handled	by	making	calls	to	functions	within	this	file.		Although	the	
script	 data_access.py	 is	 only	 responsible	 for	 data	 retrieval	 from	 Mimic,	 functions	 in	
patient_processing.py	could	be	written	to	both	retrieve	data	from	Mimic	and	process	it.		This	should	only	
be	the	case	if	processing	data	requires	information	from	Mimic	specific	to	processing	that	data.		For	future	additions,	
it	may	be	best	to	do	any	processing-specific	retrievals	in	patient_processing.py.	

STAT_REPORT.PY	
The	file	stat_report.py	contains	the	functionality	responsible	for	generating	any	reports	that	summarize	or	
visualize	aspects	of	a	patient	dataset.		This	file	should	be	able	to	have	its	functions	invoked	purely	on	the	final	post-
processing	 form	of	 the	 data.	 	 This	will	 ensure	 that	 the	 reports	 can	 be	 generated	 during	 the	 dataset-generation	
process,	or	afterwards	in	case	any	user	alterations	were	provided	to	the	dataset	that	require	the	statistics	report	to	
be	re-generated.		
	
This	file	contains	a	class,	StatReportGenerator,	that	should	be	initialized	before	generating	a	report.		By	using	
a	class,	it	will	be	easier	to	store	and	access	data	needed	across	multiple	report-generation	functions.			
	
As	 it	 stands,	 the	 only	 input	 the	 class	 needs	 is	 the	 parameter	 information	 obtained	 from	 the	 function	
getSpecifications	in	the	spec_parser.py	module.	
	

	 7	

StatReportGenerator	 currently	contains	one	function,	createReport,	 that	 is	used	to	generate	a	report	
listing	the	counts	of	measurements	along	with	their	distributions.		As	input,	the	function	takes	a	list	of	patient	data,	
either	obtained	from	post-processing	during	the	dataset	generation	or	from	reading	through	the	final	patient	dataset	
files,	and	a	directory	name,	for	where	the	report	should	be	placed.		This	directory	name	should	be	the	same	name	
of	the	directory	where	the	patient	dataset	is	stored.	
	
If	a	user	wishes	to	implement	future	functionality	for	report	generation,	additional	functionality	can	be	added	via	
functions	in	this	file	or	included	within	the	existing	function.	
	
It	is	also	important	to	note	that	script	file	can	be	run	independently.		This	means	that	if	a	user	wishes	to	further	filter	
the	results	after	initial	dataset	generation,	the	script	stat_report.py	can	be	run	afterwards	to	generate	a	new	
report	using	the	command	below:	
	

stat_report.py [directory] [specfile]
	

where	[directory]	is	the	directory	containing	the	MDGL	patient	dataset	and	[specfile]	is	the	specification	
file	to	use	within	that	directory.	
	

SETTING	UP	AND	RUNNING	
	
This	section	briefly	discusses	how	to	setup	the	MDGL	for	running.			
	

1. Make	sure	that	Python	2.7	is	installed	on	your	machine.			If	you	do	not	have	Python	2.7,	an	installer	
can	be	found	at	this	link:	https://www.python.org/download/releases/2.7/.			You	can	verify	that	
python	 has	 successfully	 installed	 by	 opening	 up	 a	 command	 prompt,	 typing	 “python --
version”,	and	hitting	return.		This	should	provide	you	with	output	similar	to		

Python 2.7.X	
	
where	X	denotes	the	specific	release	of	Python	2.7	that	you	have	installed.	

2. Make	sure	that	the	Numpy	and	psycopg2	libraries	are	installed.		If	you	are	on	a	Mac	or	Linux	
machine,	you	can	do	so	using	the	commands:	

pip install numpy
pip install psycopg2

3. If	you	are	having	problems	installing	Python	and/or	the	necessary	libraries,	you	can	instead	

install	Python	and	the	necessary	packages	using	Anaconda.		An	installer	for	Anaconda	can	be	
found	at	this	link:	https://www.anaconda.com/download.		Anaconda	is	Python	distribution	that	
makes	it	easy	to	install	popular	python	packages	used	for	data	science.		Once	you	have	installed	
Anaconda,	open	up	a	terminal	and	use	the	following	commands:	

conda install numpy
conda install psycopg2

	
4. Next,	 download	 the	 MDGL	 code	 from	 the	 GitHub	 repository:	

https://github.com/wvaugha2/MimicProject.		The	code	will	be	located	in	the	folder	“mdgl”.		By	

	 8	

placing	the	Python	scripts	in	your	working	directory,	you	can	now	begin	using	the	MDGL	using	the	
command:	
	

python data_gen.py [host] [port] [specfile]
	

	 	

	 9	

APPENDIX	A	
	
Below	is	an	example	for	a	specifications	file	that	only	considers	patients	who	have	at	least	48	hours	within	an	ICU	
stay	of	type	CCU,	SICU,	MICU,	and	CSRU;	are	above	the	age	of	16;	and	are	either	male	or	female:		
	
#ICUs

CCU True
SICU True
MICU True
NICU False
CSRU True
TSICU False

#Patients

Age; 16; 18
Sex; Both
Hours; 24

#Parameters

Albumin; ALBUMIN; [50862,1521,226981]
ALP; ALKALINE_PHOSPHATASE; [50863,3728]
ALT; ALANINE_TRANSAMINASE; [769,220644]
AST; ASPARTATE_TRANSAMINASE; [50878,220587,3801]
Bilirubin; BILIRUBIN; [50885,225690]
BUN; BLOOD_UREA_NITROGEN; [51006,1162,225624]
Cholesterol; CHOLESTEROL; [50907,789,1524,220603,3748]
Creatinine; CREATININE; [50912,51081,227005,1525,220615]
DiasABP; INVASIVE_DIASTOLIC_ARTERIAL_BLOOD_PRESSURE; [225310,8368,220051,8555,8364]
FiO2; FRACTIONAL_INSPIRED_O2; [190,223835,3420]
GCS; GLASGOW_COMA_SCORE; [198,226755]
Glucose; SERUM_GLUCOSE; [50809,50931,227015,3744,1529]
HCO3; SERUM_BICARBONATE; [227443,226759,812]
HCT; HEMATOCRIT; [51480,51221,227017,813]
HR; HEART_RATE; [220045,211]
K; SERUM_POTASSIUM; [50971,227442,1535]
Lactate; LACTATE; [50813,1531,225668]
Mg; SERUM_MAGNESIUM; [50960,1532,220635]
MAP; INVASIVE_MEAN_ARTERIAL_BLOOD_PRESSURE; [224, 224322]
MechVent; MECHANICAL_VENTILATION; [467,468,720,722]
Na; SERUM_SODIUM; [50983,1536,220645]
NIDiasABP; NONINVASIVE_DIASTOLIC_ARTERIAL_BLOOD_PRESSURE; [220180,8441]
NIMap; NONINVASIVE_MEAN_ARTERIAL_BLOOD_PRESSURE; [220052,220181]
NISysABP; NONINVASIVE_SYSTOLIC_ARTERIAL_BLOOD_PRESSURE; [220179,455]
PaCO2; PARTIAL_PRESSURE_OF_ARTERIAL_CO2; [778]
PaO2; PARTIAL_PRESSURE_OF_ARTERIAL_O2; [779]
ph; ARTERIAL_pH; [780,50831,50820,223830]
Platelets; PLATELETS; [51265,828,227457]
RespRate; RESPIRATION_RATE; [618,3603,220210]
SaO2; O2_SATURATION_IN_HEMOGLOBIN; [50817,220227]
SysABP; INVASIVE_SYSTOLIC_ARTERIAL_BLOOD_PRESSURE; [225309,51,220050]
Temp; TEMPERATURE; [50825,3655,677,223762,676]
TropI; TROPONIN-I; [51002]
TropT; TROPONIN-T; [51003,227429]
Urine; URINE; 51108,40055,43175,40069,40094,40715,40473,40085,40057,40056,40405,40428,40086,
40096,40651,226559,226560,227510,226561,226584,226563,226564,226565,226567,226557,226558]
WBC; WHITE_BLOOD_CELL_COUNT; [51301,51300,220546,1542]
Weight; WEIGHT; [763, 224639]
	
	
	

	

