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Introduction
Customer:	Dr.	Xiaopeng Zhao
Advisor:	Dr.	Michael	W.	Berry

Project:	Mimic	Dataset	Generation	Library	tool
• A	tool	that	can	access	Mimic	and,	given	a	set	of	specifications,	
generate	a	patient	dataset.

• Should	be	easy	to	setup	and	use
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Introduction - Problem
One	of	the	biggest	issues	with	research	is	data	access,	interpretation,	and	
processing.	
• Ongoing	effort	has	recently	begun	to	help	standardize	data	interpretation	

for	Mimic	[1].	
• Their	current	solution	is	the	Mimic	Code	Repository

Another	issue	is	the	ease	of	which	data	can	be	accessed.	
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Introduction - Solution
Mimic	Dataset	Generation	Library
• Written	in	Python	2.7
• Requires	the	libraries	psycopg2	and	numpy
• Consists	of	6	python	scripts

The	library	is	easily	expandable	with	the	code	existing	in	the	Mimic	Code	
Repository	and	can	quickly	generate	a	patient	dataset	in	~19-30	minutes.
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Introduction - Solution
When	this	tool	is	used,	it	will	generate	a	patient	dataset.		The	resulting	
dataset	will	be	able	to	be	found	in	a	folder	named	“patientfiles [YMD-
HMS]”.

• Each	patient	will	have	its	own	data	file	named	“[subject_id].csv”

• All	lines	within	the	file	will	follow	the	format:
[HH:MM], [name], [ID], [value]

• The	first	six	lines	contain	static	info	about	the	patient	at	the	beginning	of	
the	stay:	record	ID,	age,	gender,	height,	ICU	type,	and	weight. 
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Specifications
With	the	MDGL,	a	user	can	create	a	specifications	files	that	
specifies	the	following	information:
• Which	ICUs	to	consider:	CCU,	SICU,	MICU,	NICU,	CSRU,	TSICU
• Patient	characteristics:	Age,	sex,	length	of	ICU	stay
• Parameters:	Abbreviation,	Mimic	Ids
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Specifications
To	the	right,	we	can	see	an	example	of	the	
specifications	file	format:

ICUs
[ICU_type]	[True|False]

Patients
Age;	[min_age];	[max_age]
Sex;	[M|F|Both]
Hours;	[num_hours];	[required]

Parameters
[Abbr.];	[Description];	[Array	of	Mimic	IDs]

; 1
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MDGL Components
As	mentioned	earlier,	the	MDGL	is	comprised	
of	six	different	component	scripts:

1. data_gen.py
2. PatientThreadPool.py
3. spec_parser.py
4. data_access.py
5. patient_processing.py
6. stat_report.py
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MDGL: data_gen.py
This	script	acts	as	the	main	component	that	combines	the	functionality	
of	the	other	components.		This	script	is	responsible	for:
• Establishing	connection	to	the	database
• Initializing	data	structures
• Passing	data	between	components
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MDGL: PatientThreadPool.py
This	script	contains	the	class,	PatientThreadPool,	which	offers	the	
functionality	needed	to	access	the	database	or	perform	computations	in	
parallel.

This	class	offers	two	public	functions:	executeFunc,	which	will	take	in	a	
function	to	execute	and	the	parameters	that	should	be	passed	directly	into	or	
split	evenly	between	the	different	executions	of	that	function,	and	
getResults,	which	will	return	the	results	from	the	execution.
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MDGL: PatientThreadPool.py
The	PatientThreadPool	class	uses	python’s	Threading	library	instead	of	the	
multiprocessing	library	for	the	following	reasons:
• When	certain	modules	(such	as	numpy)	are	imported,	they	will	change	the	

processor	affinity,	which	can	affect	the	process’s	ability	to	run	in	parallel.		
This	can	affect	the	expandability	and	usability	of	the	MDGL.

• The	multiprocessing.pool()	function	has	difficulty	splitting	arguments	that	
are	very	large	in	size.		This	considerably	hurts	runtime.

• The	tool	is	targeted	for	local	execution	on	a	single	machine.		
Multithreaded	execution	works	for	this	case,	and	allows	for	data	to	be	
shared	among	processes	for	easier	data	sharing	and	synchronization.
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MDGL: PatientThreadPool.py
Only	takes	between	20	and	30	minutes	
on	a	2018	MacBook	Pro
• 2.3GHz	Intel	i5	dual-core	processor
• 8	GB	RAM		
• Hyper-threading	enabled

Graphs	of	core	usage	during	runtime	
for	four	virtual	cores
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MDGL: spec_parser.py
This	script	handles	all	of	the	functionality	needed	to	parse	information	
within	the	specification	file.		Currently,	processing	is	done	in	one	pass	
using	the	section	tags	(#ICUs,	#Patients,	#Parameters).
• Returns	the	information	from	each	tag	as	a	dictionary	of	

information
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MDGL: data_access.py
This	script	contains	most	of	the	functionality	that	will	access	the	Mimic	
database.
• Patients	are	gathered	using	a	single	query	(<	1	sec.)
• All	of	the	more	time-consuming	database	queries	are	implemented	

to	make	use	of	the	PatientThreadPool’s functionality
• Leads	to	a	69%	reduction	in	runtime	when	running	queries	in	

parallel	on	4	virtual	cores	instead	of	on	one	physical	core
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MDGL: patient_processing.py
This	component	is	responsible	for	processing	all	of	the	selected	parameters’	
measurements.		This	includes	handling	erroneous	input	values,	representing	different	
parameters	such	as	mechanical	ventilation,	or	interpreting	inequalities	or	values	that	
do	not	directly	translate	to	a	numeric	representation.

• Similar	to	the	functions	within	data_access.py,	the	main	patient	processing	
function	is	implemented	so	that	it	can	use	the	PatientThreadPool	class	for	parallel	
computation
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MDGL: stat_report
This	last	component	generates	a	report	that	contains	statistical	
information	about	the	dataset	generated.		This	includes:
• The	number	of	patients	
• The	parameters	selected
• Distributions,	patients	that	had,	and	the	total	count	of	occurrences	

for	all	of	the	parameters
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Conclusion
Overall,	the	MDGL	makes	it	very	easy	to	create	standardized	patient	datasets	
from	Mimic	that	can	be	easily	reproduced,	shared,	and	specified	by	a	user.

For	future	expansion,	this	tool	can	be	updated	to	use	existing	data	processing	
scripts	that	exist	within	the	Mimic	Code	Repository.
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Thank You!
Feel free to ask any questions.
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