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What is the Parallel Computing What is the Parallel Computing 
Toolbox?Toolbox?

•Lets you solve computationally and data‐intensive problems 
using MATLAB and Simulink on multicore and multiprocessor 
computers

•Provides support for data‐parallel and task‐parallel 
application development

•Provides high‐level constructs such as distributed arrays, 
parallel algorithms, and message‐passing functions for 
processing large data sets on multiple processors

•Can be integrated with MATLAB Distributed Computing 
Server for cluster‐based applications that use any scheduler 
or any number of workers



Client and Worker nodesClient and Worker nodes



Application areas of Parallel Application areas of Parallel 
Computing ToolboxComputing Toolbox

• Parallel for loops
Allows individual workers to execute individual 
loop iterations in parallel

• Offloading work
Offload work to the worker sessions. 
This is done asynchronously

• Large Data sets
PCT allows you to distribute that large
arrays among the workers, so that each worker 
has only a part of that array



Parallel Computing Toolbox Parallel Computing Toolbox 
TerminologyTerminology



Non Negative Tensor FactorizationNon Negative Tensor Factorization

Data mining techniques are commonly 
used for the discovery of interesting 
patterns
Study sought to identify regions (or 
clusters) of the earth which have similar 
short- or long-term characteristics. 
Earth scientists are particularly interested 
in patterns that reflect deviations from 
normal seasonal variations 



Patterns from the climate dataPatterns from the climate data

Global map of sea surface 
temperature patterns

Monthly and yearly variations
of sea surface temperature patterns



Non Negative Tensor FactorizationNon Negative Tensor Factorization
Eigensystem-based analysis driven by principal component analysis (PCA) 
and the singular value decomposition (SVD) has been used to cluster 
climate indices
Orthogonal matrix factors generated by the SVD are difficult to interpret
Among other data mining techniques, Nonnegative Matrix Factorization 
(NMF) has attracted much attention 
In NMF, an m × n (nonnegative) mixed data matrix X is approximately 
factored into a product of two nonnegative rank-k matrices, with k small 
compared to m and n, X ≈ WH.
W and H can provide a physically realizable representation of the mixed 
data W and H can provide a physically realizable representation of the 
mixed data
Nonnegative Tensor Factorization (NTF) is a natural extension of NMF to 
higher dimensional data. 
In NTF, high-dimensional data, such as 3D or 4D global climate data, is 
factored directly and is approximated by a sum of rank-1 nonnegative 
tensors. 



Non Negative Tensor FactorizationNon Negative Tensor Factorization
The ALS approach separates the NTF problem into three semi-NMF 
sub problems within each iteration, i.e.

Given X and Y, we solve for Z by

Given X and Z, we solve for Y by

Given Z and Y, we solve for X by
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Non Negative Tensor FactorizationNon Negative Tensor Factorization

Each data matrix, Tx , Ty , and Tz are 
permuted and folded form of the 
original tensor T , illustrated below.



Non Negative Tensor FactorizationNon Negative Tensor Factorization
Given                               and                               , a semi-NMF 
problem is defined as 

A modified version of the Projected Gradient Descent (PGD) method is 
used to solve the Semi-NMF problem.  It is basically adding a projection 
function on top of the regular gradient descent method.

where the gradient is 

and P+ is the projection function
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Non Negative Tensor FactorizationNon Negative Tensor Factorization
Only need to use two quadratic forms of W and A, i.e.  WTW and WTA
Comparing the sizes of two quadratic forms, i.e.             and
with the sizes of W and A,  i.e.             and             , and knowing              
, we can save memory required to store these matrices

A block operation for computing WTW and WTA, where
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Non Negative Tensor FactorizationNon Negative Tensor Factorization

• Thus, we can partition X, Y or Z in 
column blocks and make calls to the PGD 
subroutine in parallel

• When calling the PGD subroutine, only 
the quadratic forms WTW and WTA 
will be used, instead of W and A

• The quadratic forms can also be 
computed locally by partitioning W and
A, and summed later

• Focus of this PILOT study: 
Parallelize the computation of WTA



Data InvolvedData Involved

6 climate based indices used 
Name Description Adjustment

sst sea surface temperature +273.15

ndvi normalized difference vegetation 
index

+0.2

tem land surface temperature +273.15

pre precipitation

hg500 geopotential height (elevation) for
barometric pressure of 500 millibars

+300

hg1000 geopotential height (elevation) for
barometric pressure of 1000 
millibars

+300



Data InvolvedData Involved

Preprocessing of data
◦ Shifts to enforce non negativity
◦ Interpolation to counter sparsity of data
Each parameter defined by 3-way array 
◦ Dimension:  720 x 360 x 252
◦ 720 - latitude
◦ 360 - longitude
◦ 252 - month of reading
◦ Time dimension: January 1982 – December 

2002 (252 months)



Code to be ParallelizedCode to be Parallelized
function WtA = computeWtA(X,Y,Z,A)
[p k] = size(X);
[q k] = size(Y);
[r k] = size(Z);
WtA = zeros(k,size(A,4));

f{1} = X;
f{2} = Y;
f{3} = Z;

% sort 'p', 'q' and 'r' in ascending  order
[dim c] = sort([p q r]);
f = f(c);
A = reshape(permute(A,[c 4]),[p*q*r size(A,4)]);
M = circDotProd(f{1}, f{2});



Code to be ParallelizedCode to be Parallelized

for i = 1 : dim(3)
temp = M .* repmat(f{3}(i,:),[size(M,1) 1]);
WtA = WtA + temp' * A((i-1)*dim(1) 

*dim(2)+1:i*dim(1)*dim(2),:);
end;



Approaches UsedApproaches Used

Parfor Loops

Distributed Jobs with slicing A

Load and Save with distributed jobs



SetupSetup

• Cluster of 8 dual core processors (16 
workers): 
– 4x Dual Core AMD Opteron(tm) Processor 870 (8-

core total, 64-bit) Clock speed: 2 GHz
• Each approach was tested with subsets of 

data and finally with the entire data
• Subsets were created based on the time 

variable. The subsets used were 12, 24 and 
180 months

• Execution time was measured using tic/toc
function in Matlab



Parfor(ParallelParfor(Parallel--for) loopsfor) loops
• Part of the loop is executed on client, rest on the worker
• Data sent from client to workers, calculations are performed on workers, 

results are sent back to client where they are pieced together
• Used when

– There are loop iterations that take a long time to execute

• Cannot be used when
– An iteration in the loop depends on other iterations
– No advantage when there are only simple calculations to be performed in the loop.

• Example
x = 0;
parfor i = 1:10

x = x + i;
end
x



Code changesCode changes

parfor i = 1 : dim(3)
temp = M .* repmat(f{3}(i,:),[size(M,1) 1]);
WtA = WtA + temp' * A((i-1)*dim(1) 

*dim(2)+1:i*dim(1)*dim(2),:);
end



Code executionCode execution

P

Sequential code executed at the 
client

Sequential code executed at the 
client

Data sent from client to workers

Results collected from the workers at the client

Parallelizable
for loop



Execution TimesExecution Times



Programming Distributed JobsProgramming Distributed Jobs

In a distributed job:
Tasks do not directly communicate with 
each other
A worker may run several of these tasks 
in succession
All tasks perform the same function in a 
parallel configuration



Code executionCode execution

Sequential code executed at the 
client

Sequential code execution continued at the client

Scheduler sends the data to workers

Results collected from the workers at the client

Parallelizable
code

Parallelizing function called



Steps in running a distributed jobSteps in running a distributed job

Find a job manager

Create a job

Create tasks for the job

Submit the job to the 
job queue

Retrieve the results

Destroy the job



Steps in running a distributed jobSteps in running a distributed job

Find a job manager

Create a job

Create tasks for the job

findResource function identifies available job managers 
and creates an object representing a job manager in your 
local MATLAB session

Syntax: jm= findResource('scheduler',‘ type‘, 
'jobmanager',  'Name', ‘SamManager', 
'lookupURL','localhost');

Create a job using the available job manager object

Syntax: job1 = createJob(jm)

Tasks define the functions to be evaluated by the 
workers during the running of the job
Often, the tasks of a job are all identical

Syntax: createTask(jobname, functionname, # of outputs, 
{inputs});
Eg. createTask(job1, @rand, 1, {3,3});



Steps in running a distributed jobSteps in running a distributed job

Submit the job to the 
job queue

Retrieve the results

Destroy the job

To run your job and have its tasks evaluated, you 
submit the job to the job queue with the submit function

Syntax: submit(jobname);

The results of each task's evaluation are stored in that 
task object's OutputArguments property as a cell array

Syntax: results = getAllOutputArguments(jobname);

Destroy removes the job object reference object from 
the local session, and removes the object from the job 
manager memory

Syntax: destroy(job)



Code changesCode changes



Code changesCode changes

function finalWtA= WtAparallel(M,f,i,count,d1,d2,B, WtA)

finalWtA= WtA;

for k = 1 : count,

temp = M .* repmat(f(k,:),[size(M,1) 1]);

finalWtA= finalWtA+ (temp' * B((k-1) * d1 * d2 + 1:k*d1 * d2, :));

end;



Execution Times with Distributed Jobs Execution Times with Distributed Jobs 



Load and Save with Distributed JobsLoad and Save with Distributed Jobs

• Size of matrix A is very large and linear. For 
entire dataset the size of A is  65318400 x1

• In Distributed Jobs, A was being passed to 
the worker node every time a task was 
created

• This created huge overheads
• In this approach, A is saved to the local 

workspace of the node, prior to task 
creation and is reloaded only when there is 
a change in the value of A

• This minimizes the data overhead every time 
a task is created



Load and Save code execution at clientLoad and Save code execution at client

Sequential code executed at the client

Sequential code execution continued at the client

Scheduler sends the rest of input data to 
workers

Results collected from the workers at the client

Parallelizable
code

Parallelizing function called

Check if value of A is same as previous value of 
A

Save value of A to worker node workspace Yes
No



Load and save code execution at Load and save code execution at 
worker nodeworker node

Check if value of A is same as previous value of 
A

Load new value of A into local workspace

Make value of A persistent

Perform parallel computation

Send results back to client

Yes

No



Code changesCode changes



Code ChangesCode Changes
function finalWtA= WtAparallel(M,f,i,count,d1,d2, flagA, WtA)
if flagA==1

persistent A;
load('array_a.mat', 'A');

end;

finalWtA = WtA;
for k = 1 : count,

l = i+k;
temp = M .* repmat(f(l,:),[size(M,1) 1]);
finalWtA = finalWtA+ (temp' * A((l-1) * d1 * d2 + 1:l*d1 * d2, :));

end;



Execution Times with Load and SaveExecution Times with Load and Save



OverheadsOverheads



Overall ComparisonOverall Comparison



Conclusions drawnConclusions drawn

Parfor loops
◦ By far, the best performance among the three 

methods used
◦ The easiest to use in terms of code 

modification
◦ Data overhead is minimal when compared to 

other two methods



Conclusions drawnConclusions drawn
• Distributed jobs

– Except for the load and save method, there is no way 
of controlling the workspace of worker node

– Workers cannot share a workspace with the client, 
hence all input must be available to all workers

– Cannot determine node – task allocation, it is done 
by the scheduler

– Inputs have to be bound to the task at the time of 
creation, cannot be bound  to the task at a later point 
of time

– Task execution is not staggered i.e. there is no time 
lag between the start of tasks at worker nodes



Conclusions drawnConclusions drawn

Load and Save
◦ Can bind a variable to a node’s workspace for 

the length of the job, this eliminates the need 
to send it as a part of input while creating the 
task
◦ The “persistent” function saves the value of a 

variable for the duration of the job



Conclusions drawnConclusions drawn
• Parallel Computing Toolbox – Overall

– Parallel Computing Toolbox does not lend itself 
to linear inputs and relatively less complex 
parallel code

– On experimental runs with more regular square 
matrix data there was significant improvement 
over sequential execution of code
• Eg. FFT and InverseFFT code  run on two matrices of 

size 500*500 and 900 * 900
• Distributed Jobs with 8 worker nodes: 179.5767s
• Sequential execution of code: 456.4300s
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