
Performance Evaluation of the Performance Evaluation of the
MatlabMatlab PCT for Parallel PCT for Parallel

Implementations of Nonnegative Implementations of Nonnegative
Tensor FactorizationTensor Factorization

Tabitha Samuel, Master’s Candidate
Dr. Michael W. Berry, Major Professor

What is the Parallel Computing What is the Parallel Computing
Toolbox?Toolbox?

•Lets you solve computationally and data‐intensive problems
using MATLAB and Simulink on multicore and multiprocessor
computers

•Provides support for data‐parallel and task‐parallel
application development

•Provides high‐level constructs such as distributed arrays,
parallel algorithms, and message‐passing functions for
processing large data sets on multiple processors

•Can be integrated with MATLAB Distributed Computing
Server for cluster‐based applications that use any scheduler
or any number of workers

Client and Worker nodesClient and Worker nodes

Application areas of Parallel Application areas of Parallel
Computing ToolboxComputing Toolbox

• Parallel for loops
Allows individual workers to execute individual
loop iterations in parallel

• Offloading work
Offload work to the worker sessions.
This is done asynchronously

• Large Data sets
PCT allows you to distribute that large
arrays among the workers, so that each worker
has only a part of that array

Parallel Computing Toolbox Parallel Computing Toolbox
TerminologyTerminology

Non Negative Tensor FactorizationNon Negative Tensor Factorization

Data mining techniques are commonly
used for the discovery of interesting
patterns
Study sought to identify regions (or
clusters) of the earth which have similar
short- or long-term characteristics.
Earth scientists are particularly interested
in patterns that reflect deviations from
normal seasonal variations

Patterns from the climate dataPatterns from the climate data

Global map of sea surface
temperature patterns

Monthly and yearly variations
of sea surface temperature patterns

Non Negative Tensor FactorizationNon Negative Tensor Factorization
Eigensystem-based analysis driven by principal component analysis (PCA)
and the singular value decomposition (SVD) has been used to cluster
climate indices
Orthogonal matrix factors generated by the SVD are difficult to interpret
Among other data mining techniques, Nonnegative Matrix Factorization
(NMF) has attracted much attention
In NMF, an m × n (nonnegative) mixed data matrix X is approximately
factored into a product of two nonnegative rank-k matrices, with k small
compared to m and n, X ≈ WH.
W and H can provide a physically realizable representation of the mixed
data W and H can provide a physically realizable representation of the
mixed data
Nonnegative Tensor Factorization (NTF) is a natural extension of NMF to
higher dimensional data.
In NTF, high-dimensional data, such as 3D or 4D global climate data, is
factored directly and is approximated by a sum of rank-1 nonnegative
tensors.

Non Negative Tensor FactorizationNon Negative Tensor Factorization
The ALS approach separates the NTF problem into three semi-NMF
sub problems within each iteration, i.e.

Given X and Y, we solve for Z by

Given X and Z, we solve for Y by

Given Z and Y, we solve for X by

2)()(min
F

z
Z

ZYXTZ •−=φ

2
)()(min

FyY
YZXTY •−=φ

2)()(min
FxX

XYZTX •−=φ

Non Negative Tensor FactorizationNon Negative Tensor Factorization

Each data matrix, Tx , Ty , and Tz are
permuted and folded form of the
original tensor T , illustrated below.

Non Negative Tensor FactorizationNon Negative Tensor Factorization
Given and , a semi-NMF
problem is defined as

A modified version of the Projected Gradient Descent (PGD) method is
used to solve the Semi-NMF problem. It is basically adding a projection
function on top of the regular gradient descent method.

where the gradient is

and P+ is the projection function

0≥∈ ×nmRA 0≥∈ × kmRW

,subject to H ≥ 0
2)(min
FH

WHAH −=Φ

()[])()()1(p
p

pp HHPH Φ∇−= +
+ α

Non Negative Tensor FactorizationNon Negative Tensor Factorization
Only need to use two quadratic forms of W and A, i.e. WTW and WTA
Comparing the sizes of two quadratic forms, i.e. and
with the sizes of W and A, i.e. and , and knowing
, we can save memory required to store these matrices

A block operation for computing WTW and WTA, where

kk × nk ×
km× nm×

knm >>,

∑
=

=
p

i
i

T
i

T WWWW
1

∑
=

=
p

i
i

T
i

T AWAW
1

Non Negative Tensor FactorizationNon Negative Tensor Factorization

• Thus, we can partition X, Y or Z in
column blocks and make calls to the PGD
subroutine in parallel

• When calling the PGD subroutine, only
the quadratic forms WTW and WTA
will be used, instead of W and A

• The quadratic forms can also be
computed locally by partitioning W and
A, and summed later

• Focus of this PILOT study:
Parallelize the computation of WTA

Data InvolvedData Involved

6 climate based indices used
Name Description Adjustment

sst sea surface temperature +273.15

ndvi normalized difference vegetation
index

+0.2

tem land surface temperature +273.15

pre precipitation

hg500 geopotential height (elevation) for
barometric pressure of 500 millibars

+300

hg1000 geopotential height (elevation) for
barometric pressure of 1000
millibars

+300

Data InvolvedData Involved

Preprocessing of data
◦ Shifts to enforce non negativity
◦ Interpolation to counter sparsity of data
Each parameter defined by 3-way array
◦ Dimension: 720 x 360 x 252
◦ 720 - latitude
◦ 360 - longitude
◦ 252 - month of reading
◦ Time dimension: January 1982 – December

2002 (252 months)

Code to be ParallelizedCode to be Parallelized
function WtA = computeWtA(X,Y,Z,A)
[p k] = size(X);
[q k] = size(Y);
[r k] = size(Z);
WtA = zeros(k,size(A,4));

f{1} = X;
f{2} = Y;
f{3} = Z;

% sort 'p', 'q' and 'r' in ascending order
[dim c] = sort([p q r]);
f = f(c);
A = reshape(permute(A,[c 4]),[p*q*r size(A,4)]);
M = circDotProd(f{1}, f{2});

Code to be ParallelizedCode to be Parallelized

for i = 1 : dim(3)
temp = M .* repmat(f{3}(i,:),[size(M,1) 1]);
WtA = WtA + temp' * A((i-1)*dim(1)

*dim(2)+1:i*dim(1)*dim(2),:);
end;

Approaches UsedApproaches Used

Parfor Loops

Distributed Jobs with slicing A

Load and Save with distributed jobs

SetupSetup

• Cluster of 8 dual core processors (16
workers):
– 4x Dual Core AMD Opteron(tm) Processor 870 (8-

core total, 64-bit) Clock speed: 2 GHz
• Each approach was tested with subsets of

data and finally with the entire data
• Subsets were created based on the time

variable. The subsets used were 12, 24 and
180 months

• Execution time was measured using tic/toc
function in Matlab

Parfor(ParallelParfor(Parallel--for) loopsfor) loops
• Part of the loop is executed on client, rest on the worker
• Data sent from client to workers, calculations are performed on workers,

results are sent back to client where they are pieced together
• Used when

– There are loop iterations that take a long time to execute

• Cannot be used when
– An iteration in the loop depends on other iterations
– No advantage when there are only simple calculations to be performed in the loop.

• Example
x = 0;
parfor i = 1:10

x = x + i;
end
x

Code changesCode changes

parfor i = 1 : dim(3)
temp = M .* repmat(f{3}(i,:),[size(M,1) 1]);
WtA = WtA + temp' * A((i-1)*dim(1)

*dim(2)+1:i*dim(1)*dim(2),:);
end

Code executionCode execution

P

Sequential code executed at the
client

Sequential code executed at the
client

Data sent from client to workers

Results collected from the workers at the client

Parallelizable
for loop

Execution TimesExecution Times

Programming Distributed JobsProgramming Distributed Jobs

In a distributed job:
Tasks do not directly communicate with
each other
A worker may run several of these tasks
in succession
All tasks perform the same function in a
parallel configuration

Code executionCode execution

Sequential code executed at the
client

Sequential code execution continued at the client

Scheduler sends the data to workers

Results collected from the workers at the client

Parallelizable
code

Parallelizing function called

Steps in running a distributed jobSteps in running a distributed job

Find a job manager

Create a job

Create tasks for the job

Submit the job to the
job queue

Retrieve the results

Destroy the job

Steps in running a distributed jobSteps in running a distributed job

Find a job manager

Create a job

Create tasks for the job

findResource function identifies available job managers
and creates an object representing a job manager in your
local MATLAB session

Syntax: jm= findResource('scheduler',‘ type‘,
'jobmanager', 'Name', ‘SamManager',
'lookupURL','localhost');

Create a job using the available job manager object

Syntax: job1 = createJob(jm)

Tasks define the functions to be evaluated by the
workers during the running of the job
Often, the tasks of a job are all identical

Syntax: createTask(jobname, functionname, # of outputs,
{inputs});
Eg. createTask(job1, @rand, 1, {3,3});

Steps in running a distributed jobSteps in running a distributed job

Submit the job to the
job queue

Retrieve the results

Destroy the job

To run your job and have its tasks evaluated, you
submit the job to the job queue with the submit function

Syntax: submit(jobname);

The results of each task's evaluation are stored in that
task object's OutputArguments property as a cell array

Syntax: results = getAllOutputArguments(jobname);

Destroy removes the job object reference object from
the local session, and removes the object from the job
manager memory

Syntax: destroy(job)

Code changesCode changes

Code changesCode changes

function finalWtA= WtAparallel(M,f,i,count,d1,d2,B, WtA)

finalWtA= WtA;

for k = 1 : count,

temp = M .* repmat(f(k,:),[size(M,1) 1]);

finalWtA= finalWtA+ (temp' * B((k-1) * d1 * d2 + 1:k*d1 * d2, :));

end;

Execution Times with Distributed Jobs Execution Times with Distributed Jobs

Load and Save with Distributed JobsLoad and Save with Distributed Jobs

• Size of matrix A is very large and linear. For
entire dataset the size of A is 65318400 x1

• In Distributed Jobs, A was being passed to
the worker node every time a task was
created

• This created huge overheads
• In this approach, A is saved to the local

workspace of the node, prior to task
creation and is reloaded only when there is
a change in the value of A

• This minimizes the data overhead every time
a task is created

Load and Save code execution at clientLoad and Save code execution at client

Sequential code executed at the client

Sequential code execution continued at the client

Scheduler sends the rest of input data to
workers

Results collected from the workers at the client

Parallelizable
code

Parallelizing function called

Check if value of A is same as previous value of
A

Save value of A to worker node workspace Yes
No

Load and save code execution at Load and save code execution at
worker nodeworker node

Check if value of A is same as previous value of
A

Load new value of A into local workspace

Make value of A persistent

Perform parallel computation

Send results back to client

Yes

No

Code changesCode changes

Code ChangesCode Changes
function finalWtA= WtAparallel(M,f,i,count,d1,d2, flagA, WtA)
if flagA==1

persistent A;
load('array_a.mat', 'A');

end;

finalWtA = WtA;
for k = 1 : count,

l = i+k;
temp = M .* repmat(f(l,:),[size(M,1) 1]);
finalWtA = finalWtA+ (temp' * A((l-1) * d1 * d2 + 1:l*d1 * d2, :));

end;

Execution Times with Load and SaveExecution Times with Load and Save

OverheadsOverheads

Overall ComparisonOverall Comparison

Conclusions drawnConclusions drawn

Parfor loops
◦ By far, the best performance among the three

methods used
◦ The easiest to use in terms of code

modification
◦ Data overhead is minimal when compared to

other two methods

Conclusions drawnConclusions drawn
• Distributed jobs

– Except for the load and save method, there is no way
of controlling the workspace of worker node

– Workers cannot share a workspace with the client,
hence all input must be available to all workers

– Cannot determine node – task allocation, it is done
by the scheduler

– Inputs have to be bound to the task at the time of
creation, cannot be bound to the task at a later point
of time

– Task execution is not staggered i.e. there is no time
lag between the start of tasks at worker nodes

Conclusions drawnConclusions drawn

Load and Save
◦ Can bind a variable to a node’s workspace for

the length of the job, this eliminates the need
to send it as a part of input while creating the
task
◦ The “persistent” function saves the value of a

variable for the duration of the job

Conclusions drawnConclusions drawn
• Parallel Computing Toolbox – Overall

– Parallel Computing Toolbox does not lend itself
to linear inputs and relatively less complex
parallel code

– On experimental runs with more regular square
matrix data there was significant improvement
over sequential execution of code
• Eg. FFT and InverseFFT code run on two matrices of

size 500*500 and 900 * 900
• Distributed Jobs with 8 worker nodes: 179.5767s
• Sequential execution of code: 456.4300s

ReferencesReferences
``Parallel Nonnegative Tensor Factorization Algorithm for Mining Global Climate Data,''
Q. Zhang, M.W. Berry, B.T. Lamb, and T. Samuel, Proceedings of the International
Conference on Computational Science (ICCS 2009) GeoComputation Workshop, Baton
Rouge, LA, Lecture Notes in Computer Science (LNCS) 5545, G. Allen et al. (Eds.),
Springer-Verlag, Berlin, (2009), pp. 405-415.

''Scenario Discovery Using Nonnegative Tensor Factorization'', Brett W. Bader, Andrey
A. Puretskiy, and Michael W. Berry, in Progress in Pattern Recognition, Image Analysis
and Applications, Proceedings of the Thirteenth Iberoamerican Congress on Pattern
Recognition, CIARP 2008, Havana, Cuba, Lecture Notes in Computer Science (LNCS)
5197, Jos'e Ruiz-Shulcloper and Walter G. Kropatsch (Eds.), Springer-Verlag, Berlin,
(2008), pp. 791-805.

``Discussion Tracking in Enron Email Using PARAFAC'', Brett W. Bader, Michael W.
Berry, and Murray Browne, in Survey of Text Mining II: Clustering, Classification, and
Retrieval, M.W. Berry and M. Castellanos (Eds.), Springer-Verlag, London, (2008), pp.
147-163.

``Nonnegative Matrix and Tensor Factorization for Discussion Tracking'', Brett W. Bader,
Michael W. Berry, and Amy N. Langville, in Text Mining: Theory, Applications, and
Visualization, A. Srivastava and M. Sahami (Eds.), Chapman & Hall/CRC Press, (2010), to
appear.

