
PolyLens: Software for Map-based Visualization
and Analysis of Genome-scale Polymorphism Data

Ryhan Pathan
Department of Electrical Engineering

and Computer Science
University of Tennessee Knoxville

Knoxville, Tennessee 37996
Email: rpathan@utk.edu

Abstract—Currently available software for visualizing and
interpreting large scale genomic sequence information in a geo-
graphic context is less than ideal because outputs are frequently
not presented in an easily interpretable and user-friendly format.
PolyLens, a map-based visualization tool, attempts to address
this issue. Written in Java and R, it provides a self-contained
and portable means for processing population genomic data,
visualizing geographical distribution of lineages, and displaying
allele distribution patterns. This paper details the implementation
of the software, and, using a test-case genome-scale population
data set consisting of 32 individuals of the species Drosophila
melanogaster (common fruit fly) sampled from Africa and France,
demonstrates its potential uses.

I. INTRODUCTION

When working with large scale genomic sequence data,
drawing meaningful conclusions can be a difficult and tedious
task. The goal of the PolyLens project is to provide a portable
and efficient tool to facilitate phylogeographical analysis and
discovery, particularly within a spatial context. It achieves this
goal by providing a highly interactive user interface that allows
the user to generate queries on the genetic relatedness between
organisms in a population. The results of these queries are then
visualized in an easily interpreted map display, as well as in
a compact chart-like display.

The inspiration for the tool stems primarily from FutureLens
[1], a software for text visualization and analysis, shown
in Figure 1. For a collection of documents each written
by an author with a specific date, FutureLens allows the
user to explore frequently occurring terms or patterns among
documents. Connections between these frequent terms and the
dates at which they appear in the documents can quickly be
visualized and investigated. When one or a combination of
terms is investigated, a graph of the percentage of documents
containing the term versus time is also shown to the user. Also
serving as inspiration was PhyloLens, an earlier prototype for
PolyLens that provided proof of concept but lacked the general
usability and robustness required to be a widely applicable
tool. A screenshot of this prototype is provided in Figure 2.

II. PHYLOGEOGRAPHIC DATA

Before discussing the implementation details of the project,
it is first necessary to understand the data on which it operates.
PolyLens was designed to work with population genomic

Fig. 1. Three-panel color display with timeline at the top.

Fig. 2. The PhyloLens user interface.

data consisting of the following components: sample genomic
sequences, location list, gene ID list, and stop list. Each of
these are discussed briefly below.

A. Sample Genomic Sequences

The core of a PolyLens data set is a series of full DNA
sequences sampled from various individual organisms. These
genomes are subdivided into substrings of nucleotides that are
long enough to be unique across multiple genomes, called



RADTags. In the Drosophila data set, this length was 38.
These RADTags were then given a unique identifier to specify
its location in the individual’s genome. This locational identi-
fier, or locus, was of the form:

organismID location

A portion of an example DNA sequence is provided in
Figure 3.

Fig. 3. A sample DNA sequence.

B. Location List

Each sampled organism is associated with a geographic
location at which the sample was collected. Each entry in the
location list specifies a latitude and longitude as well as the
organism ID of the organism sampled there. Figure 4 is an
example location list.

Fig. 4. Coordinates associated with each organism.

C. Gene ID List

The gene ID list consists of groupings of RADTags that
represent different expressions of the same gene. Figure 5
shows a subset of the gene ID list from the Drosophila data
set. Each gene ID is associated with a set of loci, which in
turn map to RADTags. Note that multiple loci can map to the
same RADTag.

Fig. 5. Gene IDs mapped to corresponding loci.

D. Stop List

The stop list is a component borrowed from the text mining
field. In text mining, high-frequency words such as a, an, and
the merely serve as lexical filler and are relatively meaningless.
In text mining algorithms, these words are often added to a
stop list, or list of words to be excluded as noise. Likewise,
some RADTags are so common across populations that they
can be discarded in a similar fashion. Furthermore, on the
other end of the spectrum, there are some RADTags that are so
unique that they are irrelevant to relatedness queries. These can
be removed from consideration as well. The stop list then, in
a genetic context, is simply a list of RADTags to be excluded
as irrelevant. Figure 6 shows a sample subset of a PolyLens
stop list. Each RADTag is accompanied by a full listing of the
organism loci at which it is present.

Fig. 6. A sample PolyLens stop list.

E. Data Relationships

It is also important to understand the relationships between
the different data components. Each organism sample, com-



posed of a set of RADTags, is associated with one location, the
coordinates at which the sample was collected. While a given
RADTag is generally only encountered once in an individual,
multiple occurrences are possible. Furthermore, a RADTag can
occur in any number of samples. While the gene ID and stop
list data are currently expressed in terms of organism loci,
they are essentially mappings to RADTags as well. A gene
ID is associated with a set of RADTags that are the different
expressions of a gene. The stop list is a set of RADTags to be
excluded from examination. This information is represented in
an efficient manner in the entity relationship diagram shown
in Figure 7.

Fig. 7. An ER diagram describing the data relationships.

III. IMPLEMENTATION

The predecessor software, PhyloLens, while an effective
proof of concept, did not provide the necessary efficiency,
reliability, and polish to be put to practical use. Though there is
still much room for improvement, PolyLens addressed many of
these issues, resulting in a more robust and user-friendly tool.
PolyLens was implemented in Java according to the Model-
View-Controller (MVC) design, an architecture that attempts
to separate data representation and the user’s interaction with
it. This architecture provides a highly modularized class struc-
ture and distribution of tasks, providing major benefits both in
performance and further development. When a change is made
to the underlying data model, only the relevant views need be
updated. The PolyLens class structure is illustrated in Figure 8.
The following sections discuss each of the major components,
their responsibilities, and the features they provide.

A. Data Model

Due to the size and complexity of the data, the data
model is divided into several subclasses. A series of data
management classes are each tasked with parsing, maintaining,
and error checking data of a certain type. Then, a master
model class, PolyLensModel, serves as a mediator between
the data managers and the other components of the software.
Each of the data model components is discussed briefly in the
following sections.

Fig. 8. PolyLens class structure.

1) GeneID Manager, Location Manager, Sample Manager,
and Stop List Manager: Each of these manager classes is
simply tasked with maintaining an in-memory mapping of data
from each of the four data file types. The GeneIDManager
class maintains a mapping from gene IDs to their corre-
sponding RADTags. The LocationManager class maintains a
mapping from organism IDs to their corresponding latitude
and longitude pairs. The SampleManager class maintains both
a mapping from loci to their corresponding RADTags and a
mapping from RADTags to their corresponding loci. Finally,
the StopListManager class maintains a map of all loci that are
in the stop list. Each of these manager classes also maintains
a list of files from which their data is collected. At parse
time, each manager class also validates the data, excluding
erroneous entries and generating informative error messages
for the user. Each of these manager classes also maintains an
update status that the master model class can poll to discover
whether or not the data has changed.

2) Map Manager: The MapManager class serves as the
interface between R and Java. R is a software environment
for statistical computing and graphics that proved to be quite
useful for this project. Specifically, the rworldmap library was
used in conjunction with JRI, a Java/R interface, to generate
the map images illustrating the geographic distribution of the
RADTags selected for examination [3]. Given a frequency
table populated with RADTag occurrences at each coordinate,
rworldmap is capable of generating a series of pie charts drawn
at the appropriate locations on a world map. Figures 9 and 10
show an example frequency table and its corresponding map.
The MapManager class also supports the saving of frequency
tables and maps to file for later examination.

3) Color Manager: The ColorManager class maintains a
list of colors to be cycled through in the color coding of
RADTags. This class was created because several components
of the software must coordinate such that the same color
is picked for a RADTag in each component. The master
model class, PolyLensModel, cycles through one of eight



Fig. 9. Distribution of RADTags by location.

Fig. 10. An example map generated by rworldmap.

predetermined colors each time a RADTag is added to the
list of examined RADTags. More colors can be added to the
cycle, but it can be difficult to choose colors that are distinctly
different from eachother, do not obscure the underlying text
when used for highlighting, and are not irritating to the eye.

4) PolyLens Model: As mentioned earlier, PolyLensModel
serves as a mediator between the various data management
classes and the view and controller classes. Each of the
view and controller classes are registered as observers with
PolyLensModel when the application begins. Whenever an
event occurs that modifies one of the data management classes,
each observer is notified. Each observer then updates its
display only if the data relevant to it has changed. Further-
more, the controller classes may generate these events through
a series of data modification functions that also reside in
PolyLensModel.

B. Views and Controllers

In the MVC design scheme, a view provides a visual
representation of the underlying data model, while a controller
allows the user to modify it. Unfortunately, it is not always
practical to achieve separation between the two, as it may be
desirable for some views to also serve as controllers. This
was often the case in PolyLens. This section briefly details
the functionality of each view, controller, and view/controller.

C. Gene ID Tree View

The GeneIDTreeView class provides the user with an or-
ganized list view of the available gene IDs. The gene IDs

Fig. 11. The PolyLens interface as a whole.

are sorted alphabetically by their first component, and then
numerically, allowing the user to quickly navigate to the gene
ID they wish to examine. When a gene ID is selected for
examination, all of its associated RADTags are added to the list
of examined RADTags, generating an update event in several
other view components. If a RADTag is not present in any of
the sample organisms, a warning is issued to the user, and the
RADTag is excluded. Figure 12 provides an example gene ID
tree.

Fig. 12. The Gene ID Tree View.

D. RADTag Tree View

The RADTagTreeView class serves as an interface to all
of the RADTags contained by the sample organisms, whether
present in the stop list or not. The component was inspired
by file system hierarchies used in operating systems. Both
the active RADTags and the stoplist RADTags are represented
by ‘folders’, with their associated loci represented by a ‘file’
within them. Furthermore, each RADTag is labeled with the
number of organisms that it is present in. Then, the RADTags
are displayed in list order, sorted first by frequency, then al-
phabetically. The loci within each folder is also sorted, first by
organism ID, and then by location. This sorting was provided
to facilitate the primary purpose of the component, the online



building of a stop list. Since it is often severely overrepresented
and underrepresented tags that hinder relationship discovery,
it made sense to make frequency the primary organization
method for the RADTags. The component also allows the user
to add RADTags to the list of examined tags independent of
gene IDs, allowing more freedom in the exploration process.
Figure 13 illustrates the active RADTag and stop list RADTag
directory structures side by side.

Fig. 13. The RADTag Tree View.

E. Map View

The MapView class simply displays the image generated
by the rworldmap library, scaling it to the size allocated to
the component. Whenever the list of examined RADTags is
modified, the PolyLensModel class notifies the MapManager
class to generate a new map. It then notifies the MapView that
its current map is out of date. An example of this view was
provided earlier in Figure 10.

F. Location View

The LocationView class displays the RADTag distribution
in a chart-like fashion that is more organism-centric. Each
organism is represented by a bar that is placed according to
its geographic location. The bar is then color coded according
to which of the examined RADTags it possesses, using the
same color coding scheme used by the MapView. If a single
organism possesses more than one of the examined RADTags,
then the bar is subdivided. In this way, a more granular
and specific view of the RADTag distribution is provided
to the user. Furthermore, if the user mouses over a bar, a
tooltip indicating the locus and RADTag being represented
is displayed. This provides expedient access to information
available from the other components. Figure 14 provides
an illustration. When a user clicks on one of the sections
of an organism bar, the SampleView displays the genome
sequence document corresponding to that organism, with the
corresponding RADTag highlighted.

G. Examined Tag View

The ExaminedTagView class displays for the user each
of the RADTags currently being examined, as well as the
color currently assigned to it. Furthermore, if the user mouses

Fig. 14. The Location View.

over the RADTag, all of its corresponding loci are displayed,
once again providing an expedient means to reaching that
information. This component also allows the user to remove
RADTags from examination. Figure 15 provides an illustration
of this component.

Fig. 15. The Examined Tag View.

H. Sample View

The SampleView class provides a display of the full ge-
nomic sequence for a selected sample organism. If the se-
lected sample contains one or more of the currently examined
RADTags, then the document highlights them in the color
currently assigned to each. The user is free to navigate
through the document manually, but automatic scrolling to
examined RADTags is provided through interaction with the
LocationView. This component can be seen in Figure 16.

Fig. 16. The Sample View.



I. Menu Controls

The MenuControls class provides the user with a means
for parsing data, removing data, and saving maps, frequency
tables, and stop lists generated by their exploration.

IV. RESULTS

A first attempt to initiate genome-scale comparisons of
multiple individuals and populations involved a RADtag data
set obtained from 32 individual genomes of Drosophila
melanogaster. These genomes were obtained from 6 different
locations within sub-Saharan Africa and Europe. The single
European population consisted of 8 distinct French genomes,
while each of 5 African populations were represented by 4-6
distinct genomes. In order to illustrate the potential usefulness
of PolyLens, observe Figure 17, a query on the gene ID
CspR6.16520. For this particular gene, a number of flies in
France and Nigeria share a common allele that is not present
in the other African countries. This could suggest a relatedness
between the two populations. While the sample size is perhaps
not large enough to say this with confidence, this example
serves to illustrate the software’s capability.

Fig. 17. Distribution for Gene ID CspR6.16520.

V. FUTURE WORK

While PolyLens provides many features for population
genomic data exploration and pattern discovery, there is still
room for improvement. The RADtag manipulation functions
will be extended, and the merging or splitting of two or
more RADtags will also be supported in future versions.
Future improvements are also planned for the decoration of
maps with pie charts. Future pie charts will be adjusted
to accurately display information about groups of RADtags
merged by the user as well as the complete absence of related
RADtags. Another planned extension is to add in/out zoom
capability to the maps. Additional improvements include the
automatic generation and easy application of stop lists and the
display/summary of clustering output.

REFERENCES

[1] G. L. Shutt, A. A. Puretskiy, and M. W. Berry, “FutureLens Software
for Text Visualization and Tracking,” in Proceedings of the Ninth SIAM
International Conference on Data Mining: Text Mining Workshop, 2009.

[2] G. Stuart, T. Gao, R. Pathan, and M. Berry, “PolyLens: Software for
Map-based Visualization and Analysis of Genome-scale Polymorphism
Data,” International Journal of Computational Biology and Drug Design,
to appear.

[3] A. B. South, “rworldmap: A New R Package for Mapping Global Data,”
The R Journal, 2011.


