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The Constellation Project: Representing a High 
Performance File System as a Graph for Analysis
• The Titan supercomputer utilizes high performance file systems that change 

significantly as scientists run simulation algorithms
• The metadata are a rich source for data analysis to extrapolate similarities 

between the various entities with modern graph algorithms
• An efficient graph library must be utilized in order to perform analysis
• This project in lieu of thesis (PILOT) examines the Constellation graph 

library and implements graph analytics algorithms, including PageRank and 
SimRank

• Results from the analysis are examined to determine if importance in the 
graph correlates to power users of the system in a given period of time



Introduction: Titan
• Titan Cray XK7 supercomputer

• Managed by the Oak Ridge Leadership Computing Facility
• Peak performance of 27 petaFLOPS
• Third fastest in the world on the Top500 June 2016 benchmark list



Introduction: Titan
• Atlas1 high performance file system

• Contains over 1,000 object storage targets
• Total usable capacity of 14 petabytes

• Some subject areas using Titan
• Chemical sciences
• Climate change science
• Combustion science
• Molecular sciences
• Multiple topics in physics



Introduction: Data
• Two snapshots of Atlas1 were utilized, one from 20 July 

2015 (J20) and the other from 21 July 2015 (J21)



Introduction: Data
• Example App line in the data set

• Host: titan;
• App ID: 100;
• User ID: 0;
• Start time: 2015-07-20 00:00:01;
• End time: 2015-07-20 00:01:00;
• Number of processing elements: 32;
• Exit code: 0;
• Command: ./aprun -n 32 -N 1 ./io -f script 



Introduction: Data
• Example File line in the data set

• Access time: 1434850000|
• Modify time: 1434850000|
• Change time: 1434850000|
• Owner user ID: 0|
• Group user ID: 0|
• Access setting: 40700|
• Size in bytes: 4096|
• Inode: 148373000|
• Path: /ROOT/sample_file



Introduction: Data
• Example Group line in the data set

• User ID: 52;
• Group ID: 10;
• User name: nash;
• Group name: users;



Introduction: Data
• Example Job line in the data set

• Host: titan;
• User: root;
• Job ID: 2111111;
• Job name: job1;
• Project: physics1;
• Start time: 1434850000;
• Stop time: 1434859225;
• Wall time: 02:00:00;
• Nodes: 1;
• Exit code: 0



Introduction: Data
• Example User line in the data set

• User ID: 52;
• User name: nash;
• First: Andrew;
• Middle: W;
• Last: Nash;
• Email address: nashaw@ornl.gov



Introduction: Constellation
• Constellation Data Service (CDS)

• Created by the Technology Integration Group at ORNL
• Extracts entities from the snapshot files and generates a graph that 

can be loaded into a high performance system’s memory for 
analysis

• Each entity in the snapshot is represented as a vertex, and the 
program automatically adds appropriate edges

• There are different types of edges to add context to the relationship 
between two vertices in the CDS



Introduction: Constellation

Visual 
representation of 
the graph generated 
by the CDS



Implementation: CDSAnalytics
• Starts by loading a graph file generated by the CDS into memory
• In order to perform analysis, CDSAnalytics assigns a key to each 

vertex, known as a VKey, based on the attributes below



Implementation: CDSAnalytics
• Edges feature: Adds asset-type edges from file vertices to the 

respective user and group vertices that own the file

Modification of the CDS 
graph to include asset-
type edges leading into 
files



Implementation: CDSAnalytics
• Edges feature: Also adds metadata-type edges from file vertices to the 

respective user and group vertices

Modification of the CDS 
graph to include 
metadata-type edges 
leading from files



Implementation: CDSAnalytics
• Modify feature: For every file vertex in the graph, an edge is added 

from the user vertex that owns the file to the group vertex that owns 
the file, if such an edge does not already exist

Modification of the 
CDS graph that 
removes file vertices 
and replaces them 
with metadata-type 
edges



Implementation: CDSAnalytics
• Export feature: Exports the graph to a comma-separated value (CSV) 

file as a list of edges, where each line in the resulting file represents 
an edge

• Index: Generates an index that maps a vertex’s VKey to a pointer that 
indicates the location of the vertex in memory to allow for an extremely 
fast query

• PR: Generates a file containing the matrix necessary to run the 
PageRank algorithm



Implementation: CDSAnalytics
• Print: Prints the first level of file vertices that are children of the root file
• SR: Generates a file containing the matrix necessary to run the 

SimRank algorithm
• Store: Stores the current state of the graph to a file so that it can be 

reloaded later
• Total: Shows total number of the vertices, broken down by each type



Implementation: CDSAnalytics
• Query: Queries a vertex by its VKey to retrieve all of its metadata 

stored in the graph, as shown below
Enter vertex key: u52
User Vertex: u52

        ID: 52

Username: nash

Name: Nash, Andrew W.

Email: nashaw@ornl.gov

   Edges In: 3

Edges Out: 0



Implementation: DATAnalytics
• PageRank: Takes an adjacency matrix generated by CDSAnalytics to 

calculate the PageRank values for all vertices using the power method [Austin, 
2006] with a user-specified damping factor and tolerance of 0.001

• Since the adjacency matrix is sparse, as shown below, DATAnalytics only 
stores the non-zero values in three vectors and performs parallel calculations 
using Open MP

• PageRank values are used 
to attempt to rank vertices 
by importance based on 
the number of edges 
entering a particular vertex



Implementation: DATAnalytics
• SimRank: Takes the smaller adjacency matrix, without the files, generated by 

CDSAnalytics to calculate the SimRank values for all vertices, using the 
method shown below [Antonellis et al., 2008]

• Since the adjacency matrix is sparse, DATAnalytics only stores the non-zero 
values into a mapped matrix

• Since matrix multiplication is computationally intensive, DATAnalytics ignores 
all multiplications by zero and performs calculations in parallel using OpenMP

• SimRank values are used to 
attempt to compare vertices by 
similarity based on the 
connections between particular 
vertices



Results
• The CDSAnalytics and DATAnalytics programs were run on multiple high-

performance systems that each contained approximately 96 GB of memory
• Each system utilized 8 cores to allow for a peak of 800% CPU usage while 

performing parallel matrix operations
• All processes completed within approximately four hours of wall time, 

indicating that these algorithms could be reasonably implemented into the 
CDS and periodically run as batch jobs to monitor graph analytics or power a 
search engine



Results: PageRank



Results: PageRank
• The change in damping factor had minimal effect on the PageRank 

calculations
• Running PageRank on the graphs with asset-type edges did not yield 

meaningful results since most edges were distributed
• With the graphs that have metadata-type edges, the results are quite 

interesting since the edges are clustered around specific groups with high 
activity

• In the J20 M data, a user, U52, with few files received the highest PageRank 
score due to working closely with a power user in the same group, U11

• PageRank has significant potential to allow researchers to identify 
constellations among users of supercomputing systems by ranking the objects 
on the system



Results: SimRank
• Since SimRank, even with a parallel implementation, is 

computationally intensive, 5 iterations were chosen, along with the 
standard decay factor of 0.80



Results: SimRank
• U11 is the primary scientist in the G70 research group, so similarity is 

expected
• U85 is a generic user account that is utilized by students in a 

classroom setting, and SimRank accurately identified it as being very 
similar to all of the other generic student user accounts on the system

• G29 is a group of staff system engineers that maintain the 
supercomputer, and SimRank accurately identified U91 as most 
similar with a score of 0.106.	It is interesting that the next most similar 
staff user has a score of 0.084



Results: SimRank
• G96, a physics research group, and G02 have a similarity score of 0.518. G02 

is the default group of the U03 physics researcher. Interestingly, G96’s most 
similar user is U03, with a lower similarity score of 0.207, so SimRank tends to 
favor relationships between vertices of the same type

• U70 is one of the leading accelerator physics researchers responsible for the 
G89 group, so the high similarity is expected

• G22 is the default group of a user that is a researcher in the G75 group, and 
since the research in G96 and G75 is similar, G96 and G22 are also related, 
leading to the identification of a small constellation

• Additional modification to the graph would lead to even more useful SimRank
results



Observations
• Since the data sets are so large, the Constellation Data Service does an 

effective job of efficient memory management while allowing for fast traversal 
of the graph

• The introduction of the VKey in CDSAnalytics gives algorithms and users the 
ability to find a vertex in the J20 and J21 data sets quickly by utilizing a 
mapped index that can fit into the memory of a high performance system

• Even though the adjacency matrix used for SimRank did not contain the file 
vertices in the data set, the similarity scores between users and groups 
correlated with actual similarities in research areas

• Therefore, placing a greater emphasis on users and groups, while considering 
quantity of file connections, can lead to identifying constellations more quickly



Observations
• The algorithms are computationally demanding for large data sets, thus 

requiring efficient parallel performance and memory usage
• Since CDSAnalytics and DATAnalytics were written as modules that can be 

customized, these programs could be integrated into the CDS itself, or the 
CDS could automatically perform system calls to CDSAnalytics and 
DATAnalytics to generate new results

• Regular PageRank and SimRank comparisons of the graph snapshots could 
identify the hot spots of high activity, and these identified hot spots could then 
be compared with Titan usage logs to determine a correlation



Future Work
• Future improvements could include additional modifications to the graph algorithms to 

generate custom results
• For example, the various edge types could be weighted differently, or groups in the 

same area of research could be directly linked with tag vertices
• While these graph algorithms are a solid foundation for analysis of the file system, 

implementation into a production CDS environment could yield additional insight into 
user behavior and allow for real-time analysis that would be helpful to high performance 
file system engineers and administrators

• New experimental algorithms could be tested to attempt to extrapolate relationships 
among all of the file system entities more efficiently

• This experimental graph research of a high performance file system could ultimately 
lead to better collaboration among researchers of various scientific disciplines and even 
more efficient utilization of limited high performance computing resources
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