
Computational Analysis of Neutron

Scattering Data

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Benjamin Walter Martin

August 2015

c© by Benjamin Walter Martin, 2015

All Rights Reserved.

ii

Acknowledgements

I would like to thank Dr. Michael Berry for advising me during the writing of my

dissertation. His willingness to work with me and allow me to suggest my own independent

research direction is greatly appreciated. Thank you also to the other members of my PhD

committee: Dr. Jens Gregor, Dr. Chad Steed, and Dr. Claudia Rawn for their feedback and

input on my dissertation research.

I would also like to extend the greatest of thanks to Dr. Raju Vatsavai and Dr. Chris

Symons for their support during the time that I have been in graduate school. Both Raju

and Chris were my mentors during my time as an intern at Oak Ridge National Laboratory,

and their technical instruction and encouragement was instrumental in my completion of

my PhD. Thank you very much Raju and Chris for your invaluable guidance during my

internship.

In addition, I would like to thank Dr. Ross Whitfield and Dr. Rick Archibald of

Oak Ridge National Laboratory for their assistance in developing means to generate the

data used in this work. Their explanations were essential in helping me understand the

background material relating to this work as well as how to set up and run simulations for

neutron scattering experiments.

Finally, I would like to thank Dr. David Keffer of the University of Tennessee for taking

the time to discuss the work presented in this dissertation and giving me feedback on

my approach. Dr. Keffer’s input was helpful in understanding what questions a materials

scientist may have concerning my work.

iii

Abstract

This work explores potential methods for use in the detection and classification of defects

within crystal structures via analysis of diffuse scattering data generated by single crystal

neutron scattering experiments. The proposed defect detection methodology uses machine

learning and image processing techniques to perform image texture analysis on neutron

diffraction patterns generated by neutron scattering simulations. Once the methodology is

presented, it is tested via a series of defect detection problems of increasing difficulty which

utilize neutron scattering data simulated by a number of simulation techniques. As the

problem difficulty is increased, the defect detection methodology is refined in order to adapt

to challenges presented by the more difficult detection problems. The refinement process

includes the development of a data-driven scaling method that aids in the texture analysis

process by enhancing diffuse scattering textures in the diffraction patterns. The evaluation

process for the defect detection methodology includes analysis and comparison of the

computational complexities of the machine learning and image processing techniques. As

part of this complexity analysis, a detailed study of the ORB keypoint extraction algorithm

is also conducted and the computational complexity of the ORB algorithm is derived.

iv

Table of Contents

1 Introduction 1

1.1 Crystal Structures . 2

1.2 Neutron Scattering . 2

1.3 Reciprocal Space . 3

1.3.1 Mathematical Definition of Reciprocal Space 4

1.4 Defect Detection . 6

1.5 Previous Work . 8

1.6 Summary . 9

2 Proof of Concept: Defect Detection for Small Crystal Structures 10

2.1 Introduction . 10

2.2 Problem Background . 11

2.3 Image Keypoint Extraction . 11

2.3.1 Scale Invariant Feature Transform (SIFT) 13

2.4 Machine Learning Algorithms . 14

2.4.1 Support Vector Machines . 15

2.4.2 Ensemble Learning and Random Forests 16

2.5 Dataset Information . 17

2.6 Defect Detection Methodology . 19

2.7 Experiments . 21

2.7.1 Defect Type Classification . 22

v

2.7.2 Substitution Location Prediction 26

2.8 Machine Learning Algorithm Evaluation 27

2.9 Summary . 28

3 Defect Detection for Close-Packed Crystal Structures 29

3.1 Introduction . 29

3.2 Problem Background . 30

3.2.1 Close-Packed Crystal Structures 30

3.2.2 Defects in Close-Packed Crystal Structures 31

3.3 Dataset Information . 33

3.4 Defect Detection Methodology . 36

3.5 Data Preprocessing . 37

3.6 Image Keypoint Extraction . 43

3.6.1 SURF: Speeded Up Robust Features 44

3.6.2 ORB: Oriented FAST and Rotated Brief Features 44

3.7 Machine Learning . 45

3.8 Experiments . 45

3.9 Prediction Evaluation Criteria . 47

3.10 Keypoint Extractor Evaluation . 49

3.11 Summary . 52

4 Conclusion and Future Work 53

4.1 Conclusion . 53

4.2 Future Work . 54

4.2.1 Real Data Analysis . 54

4.2.2 Experimentation with Multiple Defects 55

4.2.3 Defect Texture Analysis . 55

4.2.4 Sensitivity Quantification . 56

4.3 Summary of Contributions . 56

vi

Bibliography 58

Appendix 63

A Complexity Analysis of the ORB Keypoint Extraction Algorithm 64

A.1 Introduction . 64

A.2 ORB Algorithm Summary . 64

A.2.1 oFAST: Oriented FAST . 65

A.2.2 rBRIEF: Rotation-Aware BRIEF 67

A.3 ORB Complexity Analysis . 68

A.4 Conclusion . 69

Vita 71

vii

List of Tables

2.1 Aggregated confusion matrix for 2-class SVM (linear kernel) experiment. . 22

2.2 Aggregated confusion matrix for 2-class SVM (RBF kernel) experiment. . . 23

2.3 Aggregated confusion matrix for 2-class random forest experiment. 23

2.4 Aggregated confusion matrix for 3-class SVM (linear kernel) experiment. . 24

2.5 Aggregated confusion matrix for 3-class SVM (RBF kernel) experiment. . . 24

2.6 Aggregated confusion matrix for 3-class random forest experiment. 25

2.7 Classification accuracies for substitution location experiments. 26

3.1 Aggregated confusion matrix for defect detection experiment using SIFT

keypoint descriptors. 46

3.2 Aggregated confusion matrix for defect detection experiment using SURF

keypoint descriptors. 47

3.3 Aggregated confusion matrix for defect detection experiment using ORB

keypoint descriptors. 47

3.4 Mean confidence for defect detection experiments. 49

viii

List of Figures

1.1 Building a crystal lattice using unit cells of atoms. 2

1.2 An overview of the neutron scattering process. 3

1.3 Sample reciprocal space image from a simulated neutron scattering exper-

iment. 4

1.4 Different crystal structures can produce different reciprocal space images. . 5

1.5 Sample reciprocal space images. Figure 1.5a shows a reciprocal space

image for a pure crystal structure, and Figure 1.5b is a reciprocal space

image for the same crystal structure containing a substitution defect. 7

1.6 Difference of the two images in Figure 1.5. This image was generated by

subtracting Figure 1.5a from Figure 1.5b. 7

2.1 Defect diagrams for a simple crystal structure. 12

2.2 Illustration of the keypoint-based feature extraction process. 13

2.3 Example of image keypoint detection. The colored circles in Figure 2.3b

are the locations of the keypoints detected for the input image. After

the keypoint detection step, descriptors are calculated for the texture

surrounding the keypoint locations. The SIFT keypoint detection algorithm

described in Section 2.3.1 was used in this example. 14

2.4 Classification via support vector machine. The points on the margin

boundaries (dotted lines) are the support vectors for this dataset. 15

2.5 Use of kernel to map data to higher dimensional space for linear separation

by a SVM. 16

ix

2.6 Classification via random forest containing 3 decision trees. 18

2.7 Representative reciprocal space images from the simulated small structure

neutron scattering dataset. 20

2.8 Flowchart for defect detection methodology. 21

3.1 Diagrams of close-packed crystal structures. The stacking configurations in

Figures 3.1a and 3.1b give examples of cubic close-packing and hexagonal

close-packing, respectively. 31

3.2 Example of HCP stacking fault within CCP structure. 32

3.3 Examples of long-range order (left) and short-range order (right). Each

green dot represents a cell containing a single atom, and each black dot

represents a vacancy. 33

3.4 Representative reciprocal space images from the classes contained within

the cubic close-packed crystal structure dataset. 34

3.5 Representative reciprocal space images from the classes contained within

the hexagonal close-packed crystal structure dataset. 35

3.6 Flowchart for the revised defect detection methodology. The step high-

lighted in yellow was a necessary addition to the methodology presented in

Chapter 2, and the step highlighted in green required was modified in order

to address the larger volume of keypoints detected in the large structure data. 37

3.7 Unscaled reciprocal space images. 38

3.8 Illustration of the effect of scaling on a sample reciprocal space image. . . . 38

3.9 A 10-bin histogram (logarithm scale y-axis) for pixel intensities within a

representative reciprocal space image. 39

3.10 Screenshot of the reciprocal space image analysis tool displaying the

intensity map for the reciprocal space image. 41

3.11 Screenshot of the keypoint plotting feature for the reciprocal space image

analysis tool. The colored circles within the grayscale intensity image

indicate the center of a keypoint identified by the keypoint detector. 42

x

3.12 Illustration of the shortcomings of applying a fixed percentage threshold to

the images from Figure 3.7. Using a threshold that is a fixed percentage

of the maximum produces sharp diffuse scattering textures in Figure 3.12a,

but does not perform as well for the image in Figure 3.12b. These images

were created by defining the threshold T to be 1% of the maximum

intensity in the original image and scaling all pixel intensities I such that

Inew = min (I, T). 43

3.13 Images from Figure 3.7 scaled using a threshold of the mean intensity.

These images were created by defining the threshold M to be mean

intensity for the original image and scaling all pixel intensities I such that

Inew = min (I,M). 43

3.14 Runtime graphs for the experiments described in Section 3.8. 50

A.1 Corner detection using FAST. 66

xi

Chapter 1

Introduction

Defect detection in crystalline materials is an area of importance across a number of

disciplines. The presence of defects within a crystal can affect a number of material

properties including material strength (Sun et al., 2009), thermal conductivity (Zhan et al.,

2014), properties relevant to the development of pharmaceuticals (Welberry and Goossens,

2014). This work seeks to use image processing and machine learning methods to detect

crystal defects by analyzing reciprocal space imagery generated by single crystal neutron

scattering experiments. The goal of the methodology is to perform automatic classification

of defects within crystal structures and flag samples for which the methodology is uncertain

of the presence of a defect.

This dissertation is organized as follows: First, the necessary background material on

crystal structures and defects will be discussed. Next, a simple proof-of-concept will be

presented that proposes a candidate methodology and uses a very simple defect detection

problem to evaluate the effectiveness of the methodology. The methodology will then be

examined in more detail in the context of a more difficult problem that utilizes a dataset

generated by an open-source simulation package. A conclusion and discussion of future

work will then follow.

1

1.1 Crystal Structures

A crystal is a material containing atoms that are arranged in a periodically ordered

structure (Borchardt-Ott, 2012). The basic unit of a crystal is a structure of atoms called a

“unit cell” (Evans, 1964). This unit cell is replicated and stacked in a repeating pattern to

form a crystal lattice. An example of building a crystal lattice from a unit cell is given in

Figure 1.1.

Figure 1.1: Building a crystal lattice using unit cells of atoms.

The repeating pattern present within a crystal lattice is referred to as “long-range

order” (Evans, 1964). A defect occurs when some aspect of the crystal is changed such

that the long-range order is disrupted (Chiang et al., 1996). Detection of defects within a

crystal lattice will be the major focus of this work.

1.2 Neutron Scattering

Neutron diffraction is a means of analyzing crystal structures. A diagram outlining the

neutron scattering process shown in Figure 1.2. Analysis of a crystal involves directing

a beam of neutrons into a material sample and allowing the neutrons to be scattered by

the atoms within the crystal structure (Schober, 2008). Neutron detectors are then used

to detect the diffraction patterns generated by the scattered neutrons. These diffraction

2

patterns create a “reciprocal space” image that describes the structure of the material. An

in-depth discussion of the definition of the reciprocal space, simulation of reciprocal space

images for a neutron scattering experiment, and the role of the reciprocal space imagery in

the detection of crystal defects is available in Sections 1.3 and 1.4.

Figure 1.2: An overview of the neutron scattering process.

1.3 Reciprocal Space

A reciprocal space image is an intensity map of the scattered neutrons detected during a

scattering experiment (Butler and Welberry, 1992). Figure 1.3 is an example of a reciprocal

space image generated by a neutron scattering experiment. As illustrated in Figure 1.4,

making changes to a crystal structure can cause changes in the reciprocal space image,

and thus the reciprocal space image can be used to identify defects within a crystal. By

examining the nature of the differences between the reciprocal space images for a known

pure crystal and for a new unknown crystal, it is possible to observe signs of defects within

the reciprocal space image for the new crystal structure.

The textures within reciprocal space images can be divided into two classes: high-

intensity Bragg peaks, and low-intensity diffuse scattering. The Bragg peaks within

3

the image describe the average structure of the crystal structure (Egami and Billinge,

2012), and the diffuse scattering patterns describe deviation from the average crystal

structure (Nield and Keen, 2001). Therefore, since a defect is a deviation from the average

crystal structure, analysis of the diffuse scattering patterns will be the focus of this work.

Figure 1.3: Sample reciprocal space image from a simulated neutron scattering
experiment.

1.3.1 Mathematical Definition of Reciprocal Space

As shown by (Butler and Welberry, 1992), it is possible to mathematically generate a

simulated reciprocal space image using a 2-dimensional discrete Fourier transform (DFT).

The general form for the reciprocal space is given in Equation 1.1. In this type of

simulation, the neutron beam is modeled as a plane wave that generates spherical plane

waves that are scattered from the atoms within the crystal lattice (Pynn, 2008). In the

equation, A (k) is the complex scattering amplitude at vector location k in the image, N

is the number of cells in the lattice, Fm is the structure factor for cell m, and Rm is the

position vector for the mth cell in the lattice.

4

Figure 1.4: Different crystal structures can produce different reciprocal space images.

A (k) =
N∑

m=1

Fmexp (ik ·Rm) (1.1)

The structure factor for a cell can be calculated using formula in Equation 1.2, where

Nm is the number of atoms in cellm, fn is the atomic scattering factor for atom n (available

via a lookup table), and rn is the position vector for atom m within the cell.

Fm =
Nm∑
n=1

fnexp (ik · rn) (1.2)

5

Once the complex scattering amplitude A (k) has been calculated, then the reciprocal

space image can be calculated by multiplying A (k) by its complex conjugate to get the

magnitude of the intensity at pixel location k as shown in Equation 1.3.

I (k) = A (k)A∗ (k) (1.3)

The fact that the intensity of the reciprocal space image is the squared magnitude of the

complex scattering intensity presents a very significant problem. By taking the magnitude,

the phase information for the scattering is completely lost and thus makes it impossible

to determine the crystal structure directly via the inverse Fourier transform (Pynn, 2008).

While the phase information could be preserved in simulation by simply working with the

complex data, in many cases the phase data cannot be detected in a real neutron scattering

experiment (Egami and Billinge, 2012). This phenomena is known as the “phase problem”,

and addressing the phase problem is an open area of research (Welberry and Goossens,

2014). The methodology presented in this work seeks to overcome this limitation by

focusing on analysis of the textures present in the magnitude data for a reciprocal space

image.

1.4 Defect Detection

As mentioned in Section 1.1, a crystal defect occurs when the long-range order of the

crystal lattice is disrupted. When a defect is introduced into a crystal structure, the

reciprocal space image is modified in a specific way that is determined by the defect type.

Therefore, a particular type of defect will generate textural features within the reciprocal

space image that can be looked at as a “fingerprint” that identifies the type of defect within

the crystal. However, these changes in the reciprocal space image can be very subtle

and may not be visible to the human eye. Thus simply identifying the defects via visual

inspection may not be possible in some cases. As an illustration, Figure 1.5 shows a side-

by-side comparison of two images: Figure 1.5a is a reciprocal space image for a pure

6

crystal structure, and Figure 1.5b is a reciprocal space image for the same crystal structure

containing a substitution. While the images may look very similar, subtracting one of

the images from the other as shown in Figure 1.6 reveals that there are very distinctive

yet subtle differences between the images. Thus a computational methodology that can

automatically detect these types of subtle defects would be greatly beneficial as it could

potentially detect defects that are not visible to the human eye.

(a) Pure Crystal (b) Substitution

Figure 1.5: Sample reciprocal space images. Figure 1.5a shows a reciprocal space image
for a pure crystal structure, and Figure 1.5b is a reciprocal space image for the same crystal
structure containing a substitution defect.

Figure 1.6: Difference of the two images in Figure 1.5. This image was generated by
subtracting Figure 1.5a from Figure 1.5b.

7

1.5 Previous Work

The computational processing of neutron scattering data is an emerging field of research,

and analysis methodologies for reciprocal space images are still being developed. A

common method of defect detection is visual inspection by a human expert or a trial-and-

error approach (Egami and Billinge, 2012). This is an arduous task that involves collecting

reference reciprocal images for defective crystals from neutron scattering literature or

simulation, visually observing the characteristics of the reference images, and then

searching for similarities in the characteristics of the reference images to the new image

for the crystal that is under analysis. If the new image shares enough visible similarities to

any of the the reference images, then the new image is assumed to contain the same defects

as the reference image. In many cases, this process is performed because a researcher has

a suspicion as to the type of defect within the crystal and wants to verify that the defect in

fact exists within the crystal. However, it is less likely that the researcher will identify a

defect within an image if there is not prior suspicion that a defect is present.

Image texture analysis has shown to be a viable method of classifying images. Previous

studies have shown keypoint-based texture analysis to be successful in areas such as scene

classification (Ayers and Boutell, 2007) and change detection in satellite imagery (Martin

and Vatsavai, 2013). All of these previous studies extract texture features and then use

machine learning methods to analyze the textures in the images. However, in contrast to the

crystal defect detection problem presented in this chapter, these previous studies focused on

classifying images based on large differences between the image classes. This work seeks

to evaluate the use of image texture analysis to detect subtle defects within the reciprocal

space images and determine the best methods to use when applying image texture analysis

to reciprocal space imagery analysis.

8

1.6 Summary

It has been established in this chapter that detection of defects within a crystalline material

via analysis of reciprocal space imagery is an important problem that is currently a difficult

problem to solve using current methods. Given the amount to effort required to manually

analyze reciprocal space imagery in an effort to identify defects within the crystal structure,

a computational method to automatically detect defects would be of great benefit to the

scientific community. Relevant background material has also been presented in order to

introduce the reader to crystal structure concepts necessary to understand the problems

presented in the remainder of this work. The following chapters discuss a proposed

methodology that can be trained to recognize defects by analyzing a reciprocal space image

generated by a crystal and evaluate the effectiveness of this methodology using various

simulated datasets.

9

Chapter 2

Proof of Concept: Defect Detection for

Small Crystal Structures

2.1 Introduction

An initial test of the feasibility of automatically detecting crystal defects using reciprocal

space images involved series of experiments performed on a small crystal structure. The

goal was to train a classifier that could distinguish between different type of defects

within a particular crystal. In order to maintain a controlled environment in which to

evaluate candidate methodologies, a simple dataset for an extremely small simulated crystal

structure was used in experimentation. This simple dataset was used with the intention of

developing methodologies that could be used on larger structures. The work in this chapter

seeks to specifically answer the following questions:

1. Is it possible to train a classifier which can automatically classify defects present

within simulated reciprocal space imagery?

2. How can one extract descriptive features from the images?

3. Can only large defects be detected within the crystals, and can more subtle defects

be detected as well?

10

4. Does the type of classifier used matter when performing defect detection?

2.2 Problem Background

As stated in Chapter 1, crystalline structures consist of a lattice constructed of repeating

patterns of “unit cells”. A unit cell is a fundamental building block for a crystal and can

contain a varying number of atoms. In a pure crystal, the cell structure remains uniform

across the entire crystal, and defects occur when a cell within the crystal structure deviates

from this uniform structure. There are many different types of simple defects that can

occur in a small crystal structure such as the one used in this chapter. Below are the types

of defects considered in this chapter:

• Substitutions — A cell in the crystal is replaced with another type of cell.

• Shear — Deformation along parallel planes intersecting the crystal structure.

Diagrams illustrating these defects are given in Figure 2.1. One thing to note is that the

substitution defects analyzed in this work only modify a single unit cell at a time whereas

the shear defects will affect unit cells along the entire shear plane. Therefore, given the

formulation of the reciprocal space in Chapter 1, shear defects can potentially make larger

changes to the reciprocal space image than the substitution defects. This observation on

the effect of the defect size on the reciprocal space image was leveraged when constructing

increasingly difficult experiments for use in evaluation the defect detection methodology.

2.3 Image Keypoint Extraction

In order to facilitate the processing of a reciprocal space image computationally, a

numerical description of the image must be generated which captures the most relevant

features from the image. These descriptors can describe the edges or corners within

the image, the image’s textures, and more. One class of image descriptors that are of

11

(a) Pure Crystal

(b) Substitution (c) Shear

Figure 2.1: Defect diagrams for a simple crystal structure.

particular interest to this work are “keypoint descriptors”. Keypoint extractors use a two-

step approach to generate descriptors for an image. In the first step, areas of interest, or

“keypoints”, are identified within the image using a specific set of criteria predefined by

the extractor. Once the keypoints are identified, a feature vector is then computed which

mathematically describes the texture of the image in the area surrounding the keypoint.

Keypoint feature extraction can be performed in a variety of ways, but in general a keypoint

extraction algorithm will provide two pieces of data for each keypoint: the coordinates for

the keypoint location within the image, and a descriptor for the image texture surrounding

12

the keypoint location. The specific methods used in the detection and computation steps

are defined by the individual keypoint extraction algorithm. Figure 2.2 provides a visual

illustration of the general process of extracting features from an image using a generic

keypoint extraction algorithm.

Figure 2.2: Illustration of the keypoint-based feature extraction process.

2.3.1 Scale Invariant Feature Transform (SIFT)

The Scale-Invariant Feature Transform (SIFT) is a common keypoint extraction method-

ology that was developed as a means to extract features that can be used to match

objects within two different images. The features were designed to be scale and rotation

invariant such that they are robust to changes in the image such as affine transformations,

noise addition, and lighting changes (Lowe, 2004). For keypoint detection, SIFT uses

a difference-of-Gaussian function to identify intensity extrema in the image which are

designated as keypoints. Descriptors for the resulting keypoints are then generated by

creating a 16x16 pixel patch centered on the keypoint location, partitioning the patch into a

13

4x4 grid, and calculating 8-bin gradient orientation histograms within the cells of the grid.

This creates a 128-dimensional SIFT descriptor for each keypoint. These feature vectors

can then be used as inputs to a classification algorithm. Figure 2.3 shows an example of

a grayscale representation of a reciprocal space image and the locations of the keypoints

detected for that image by SIFT.

(a) Input Image (b) Detected Keypoints

Figure 2.3: Example of image keypoint detection. The colored circles in Figure 2.3b are
the locations of the keypoints detected for the input image. After the keypoint detection
step, descriptors are calculated for the texture surrounding the keypoint locations. The
SIFT keypoint detection algorithm described in Section 2.3.1 was used in this example.

2.4 Machine Learning Algorithms

This work utilizes supervised machine learning methods to train a model that can classify

the keypoint descriptors extracted from the reciprocal space imagery. The general idea

behind supervised learning is to train a learner to predict the class, or “label”, for a given

feature vector. The training process is accomplished by presenting the learner with a set

of samples from a training dataset in which the samples have already been assigned labels.

14

The learner uses the samples within this training set to build a classification model that can

then be used to predict the labels for new, unlabeled samples in a testing dataset.

2.4.1 Support Vector Machines

Support vector machines (SVMs) are a type of machine learner which have been widely

adopted due to their accuracy, speed, and simplicity (Boser et al., 1992). A SVM attempts

to find a hyperplane which linearly divides the classes and maximizes the separation margin

between the classes. This is accomplished by training the SVM using data points for which

the class is previously known and identifying “support vectors” which define the maximal

margin boundaries. Figure 2.4 illustrates classification using a SVM for a small dataset.

Figure 2.4: Classification via support vector machine. The points on the margin boundaries
(dotted lines) are the support vectors for this dataset.

Typically a SVM only distinguishes between two classes, but SVMs can also be used

for a multi-class problem by training a separate SVM model for each class. Each model

then predicts whether or not an instance is a member of its assigned class. This ability to

15

do multi-class learning allows for a single SVM to be trained which can detect many types

of crystal defects.

Although SVMs were designed to classify linearly separable data, a kernel function can

be applied to the data during SVM training in order to allow for classification of data which

is not linearly separable. A kernel function maps the data from one feature space to another

with the goal of the data being linearly separable in the new feature space.

Figure 2.5 provides an example of using a kernel to transform data for linear

separability. There are many types of kernel functions that are traditionally used with

SVMs, but this chapter will evaluate both a linear kernel and a radial basis function (RBF)

kernel.

(a) Input Space (b) Mapped Feature Space

Figure 2.5: Use of kernel to map data to higher dimensional space for linear separation by
a SVM.

2.4.2 Ensemble Learning and Random Forests

Ensemble learning is a class of machine learning frameworks that use collections (ensem-

bles) of learners to train a model. The basic idea behind ensemble learning is that a series of

k learners with weak classification performance are trained individually and then combined

to produce a strong classifier. This can lead to increased accuracy and robustness for the

classifier because the output is a combination of “opinions” by the individual learners based

on their analysis of a particular aspect of the problem space. It should be noted that the

16

machine learning algorithm utilized by the individual learners within an ensemble can often

be selected irrespective of the ensemble framework.

There are a number of types of ensemble learning frameworks, but one specific

framework of interest is “bootstrap aggregating” or “bagging” (Breiman, 1996). A bagging

ensemble trains k base learners using different subsets of the training dataset. These subsets

are created by randomly selecting N samples the training dataset with replacement such

that N is much less than the number of total training samples. During classification, k

labels are generated by the members of the ensemble and the final classification for the

input sample is typically generated by taking a majority vote or average of the outputs by

the ensemble members.

A random forest is a variant of the bagging framework that uses binary decision

trees as the base learning method for its ensemble members (Breiman, 2001). Random

forests implement the previously described bagging methodology, but also apply a “feature

bagging” scheme during training. In feature bagging, each ensemble member learns to

classify samples at each split of the decision tree using only a subset of the features

within each feature vector. Thus an ensemble member within a random forest will focus

on learning to correctly classify its subset of the training samples while considering only

small portions of the features for a given sample. This allows the random forest to learn

to filter noisy or irrelevant features while maintaining high accuracy and short training

times (Breiman, 2001). Figure 2.6 illustrates the structure of a random forest.

2.5 Dataset Information

The dataset used in this chapter is a simple dataset containing reciprocal space imagery

for a generic 8 cell by 8 cell planar crystal simulated using the methodology described

in (Butler and Welberry, 1992). The dataset was not constructed with the intent of

simulating a specific realistic crystal structure, but was instead designed to provide a simple

problem which could be used to evaluate the feasibility of detecting crystal defects by

analyzing reciprocal space imagery using machine learning methods. The crystal’s unit

17

Figure 2.6: Classification via random forest containing 3 decision trees.

cells contained two atoms: an atom at location (0.35 Å, 0.35 Å) with scattering factor 0.25,

and an atom at location (0.8 Å, 0.8 Å) with scattering factor 0.15. All atom coordinates

were relative to one corner of the unit cell. The only simulation output provided was

reciprocal space intensity maps which were in the form of a 129 pixel by 129 pixel image

with floating point intensities on the range [0, 655]. The SIFT keypoint extractor requires

that the intensities of all input images be on the interval [0, 255], and the intensities for

the reciprocal space images were thus thresholded at 255 in order to accommodate for this

constraint. For a given reciprocal space image, one of the three types of defects listed

in Section 2.2 were present within the crystal structure. Furthermore, for the images for

crystals containing substitution defects, two types of substitutions were present: small

substitutions and large substitutions. A small substitution was defined as a substitution

in which the new cell contained a single atom that had an atomic scattering factor on the

range [0, 1]. Similarly, in a large substitution the new cell contained a single atom with an

atomic scattering factor on the range (1, 2). The shear samples contained a shear of varying

magnitude along a shear plane randomly placed within the crystal.

18

For the large substitution and shear classes, 1,000 reciprocal space images were

available for analysis. The small substitution dataset had 200 images available, and thus,

in order to balance the class representation when performing experiments, reduced sets

of 200 large substitution and 200 shear images were used in the following experiments

unless otherwise noted. All of the images had labels available which described the type

of defect present within the image. In addition, the large substitution dataset included

a set of parameters describing the location of the defect within each image. Figure 2.7

contains a representative sample of the reciprocal space images within the dataset. The

figure shows that there was similarity between the images and that many of the images

were hard to distinguish via inspection. As predicted in Section 2.2, one can observe that

some of the shear samples have larger differences compared to the substitution samples due

to the fact that a shear defect can affect a larger part of the cells in the lattice as compared

to a substitution defects.

2.6 Defect Detection Methodology

Given the properties of the reciprocal space data, a methodology to detect and classify

crystal defects within reciprocal space images was developed. The goal was to be able to

classify crystal structure defects by learning from labeled reciprocal space images. With

this in mind, the defect detection methodology was comprised of two-stages:

1. A feature extraction stage which analyzed the reciprocal space imagery and generated

feature vectors which could be used in classification.

2. A machine learning stage which used the extracted feature vectors to train a model

which was then used to detect defects in new reciprocal space images.

During the training phase of the algorithm, the keypoint extractor automatically

detected the areas of interest within the reciprocal space image and then extracted a series

of descriptors which described the image texture for each detected keypoint. Once the

19

(a) Large Substitution

(b) Small Substitution

(c) Shear

Figure 2.7: Representative reciprocal space images from the simulated small structure
neutron scattering dataset.

20

descriptors were extracted, each descriptor was assigned a label that was the same as

the label for the entire image. The machine learner was then trained to take a keypoint

descriptor as an input and predict the type of defect present in the image that the keypoint

descriptor was extracted from.

When classifying a new image, the keypoint descriptors for the entire image were

extracted and individually labeled by the learning algorithm. Once all of the descriptors had

a classification, the final label for the image was determined by a majority vote of the labels

for the individual descriptors. The keypoint descriptors for an entire image were considered

as independent features which describe the most unique aspects of an image. Therefore,

class membership was assigned for an image based on the most frequent class assignment

for its individual keypoint descriptors. This majority voting method for classification

also allowed for filtering of features that were shared among all images or unique to a

specific image because the predicted labels for many features are considered during class

assignment. Figure 2.8 is a flowchart outlining the basic stages for this methodology.

Figure 2.8: Flowchart for defect detection methodology.

2.7 Experiments

A series of experiments were performed which evaluated the effectiveness of the method-

ology described in Section 2.6 in classifying defects within the reciprocal space images

contained the dataset described in Section 2.5. All of the experiments in this section

used the Python bindings for the SIFT module provided by the OpenCV computer vision

library (Bradski, 2000) to generate descriptors for the reciprocal space images. In addition,

the “svm” and “ensemble” modules from the scikit-learn library (Pedregosa et al., 2011)

were used for the SVM and random forest classification, respectively. The scikit-learn

library uses libSVM (Chang and Lin, 2011) as its underlying SVM implementation. Two

21

SVMs were evaluated: one which used a linear kernel, and one which used a RBF kernel

with a kernel coefficient of 1
F

, where F is the number of features. The random forest used

in the experiments contained 10 decision trees.

2.7.1 Defect Type Classification

The series of experiments tasked the classifier with learning to predict the type of defect

present in a given reciprocal space image. In order to perform an initial assessment of the

overall performance of the methodology, an experiment was conducted which tasked the

classifier with separating the samples into two classes: “substitution” and “shear”. A total

of 400 substitution samples (200 large substitutions and 200 small substitutions) and 200

shear samples were used in the experiments. During the training phase, a training dataset

was generated by randomly selecting 10% of the images from each class and extracting

keypoint descriptors from the images which were used to train either a SVM (linear or

RBF kernel) or a random forest. Once the machine learning model was trained using the

training dataset, predictions for the remainder of the images in the dataset were collected

and tallied. In order to filter noise in the experimental results, 20 independent trials were

performed for each experiment where a new training dataset was sampled and a new model

was trained for each trial. The confusion matrices for each trial were summed across the

20 runs, and the aggregated confusion matrices are given in Tables 2.1, 2.2, and 2.3.

Table 2.1: Aggregated confusion matrix for 2-class SVM (linear kernel) experiment.

Actual
Class

Predicted
Class

Substitution Shear Recall

Substitution 7200 0 100.0%
Shear 290 3310 91.94%

Precision 96.12% 100.0% 97.31%

22

Table 2.2: Aggregated confusion matrix for 2-class SVM (RBF kernel) experiment.

Actual
Class

Predicted
Class

Substitution Shear Recall

Substitution 7200 0 100.0%
Shear 441 3159 87.75%

Precision 94.23% 100.0% 95.92%

Table 2.3: Aggregated confusion matrix for 2-class random forest experiment.

Actual
Class

Predicted
Class

Substitution Shear Recall

Substitution 7200 0 100.0%
Shear 211 3389 94.14%

Precision 97.15% 100.0% 98.05%

Analysis of the tables shows that all three machine learning algorithms were able to

successfully identify the defects present in the testing dataset with very high accuracy.

However, Table 2.2 shows that the RBF kernel mistakenly placed more of the “shear”

samples in the “substitution” class than the others and thus had poorer accuracy than the

other two methods. The random forest had the highest accuracy of the three methods

tested with the linear SVM having slightly lower accuracy than the random forest. As

noted in Section 2.5, classification between some of the substitution and shear samples

was not extremely difficult due to the visible differences between some of the reciprocal

space images. However, the experiment was able to prove that keypoint descriptors were a

suitable choice for extracting relevant features from the reciprocal space images.

In order to create a more difficult problem to further test the capability to the defect

detection methodology, a second experiment was conducted which split the “substitution”

class into two separate classes: “large substitutions” and “small substitutions” as defined

23

in Section 2.5. Each of the new classes generated by the split contained 200 samples

each. All other aspects of this experiment were identical to the previous 2-class

experiment. The differences between the two substitution classes were much more subtle

than the differences between the substitution and shear classes of the previous experiment.

Therefore, the new 3-class experiment explored whether the defect detection methodology

was capable of classifying subtle defects in addition to larger ones. The results for these

new experiments are given in Tables 2.4, 2.5, and 2.6.

Table 2.4: Aggregated confusion matrix for 3-class SVM (linear kernel) experiment.

Actual
Class

Predicted
Class

Large Substitution Small Substitution Shear Recall

Large Substitution 2073 1527 0 57.58%
Small Substitution 1293 2307 0 64.08%

Shear 236 89 3275 90.97%
Precision 57.55% 58.81% 100.0% 70.87%

Table 2.5: Aggregated confusion matrix for 3-class SVM (RBF kernel) experiment.

Actual
Class

Predicted
Class

Large Substitution Small Substitution Shear Recall

Large Substitution 1385 2215 0 38.47%
Small Substitution 623 2977 0 82.69%

Shear 219 122 3259 90.52%
Precision 62.19% 56.02% 100.0% 70.56%

The results in Tables 2.4, 2.5, and 2.6 show that splitting the substitutions into two

subclasses caused a decrease in the classification accuracy for the all methods due to

confusion between the large and small substitution classes. However, it can be observed

that the classifiers were still able to distinguish between between the two types of

24

Table 2.6: Aggregated confusion matrix for 3-class random forest experiment.

Actual
Class

Predicted
Class

Large Substitution Small Substitution Shear Recall

Large Substitution 2588 1012 0 71.89%
Small Substitution 1395 2205 0 61.25%

Shear 137 35 3428 95.22%
Precision 62.81% 67.80% 100.0% 76.12%

substitutions for a majority of the substitution samples. Therefore, it can be determined

that the system is robust enough to distinguish not only defect type, but also characteristics

of the defect such as substitution size.

In the above 3-class experiments, there was no separation margin between the small

and large substitution in the above 3-class tests. The largest scattering factor present

in the small substitution dataset was 1.0, and the smallest scattering factor in the large

substitution dataset was 1.001. In order to evaluate whether the size of the margin between

the two separation classes had an effect on the accuracy of the classification, a third series of

tests were performed which removed points from the large and small substitution classes

such that a small substitution was limited to atoms with a scattering factor on the range

[0, 0.75]. Once this new dataset was constructed, the 3-class experiment was repeated

with the new dataset. Analysis of the classification accuracies using the larger margin for

the substitution classes showed that widening the margin did not significantly affect the

classification accuracies. Thus, more research into the nature of the differences between

the large and small substitution images would be helpful in improving the accuracy of the

classification system. This topic is discussed in more depth in Chapter 4.

It should be noted that for all experiments, there was a very small portion of the shear

images for which no keypoints were detected due to the small size of the reciprocal space

images. Therefore, the classifier was biased such that any image for which no keypoints

were detected was automatically classified as “shear”.

25

Another thing to note is, in the unlikely event of a tie in the voting step, the algorithm

defaulted to assigning a label of “substitution” in the 2-class experiment, and “large

substitution” in the 3-class experiment. Improvements to this tie-breaking scheme are

discussed in more depth in Chapter 3.

2.7.2 Substitution Location Prediction

In addition to detecting the type of defect within an image, experiments were performed

to determine whether the methodology described in Section 2.6 could be trained detect

specific properties of the defects present in a crystal. One parameter of interest was the

location of the substituted cell within the large substitution dataset. The crystal lattice was

8 cells by 8 cells, so the substitution location can be described as an integer index for one

of the 64 cells within the lattice.

In order to evaluate the methodology’s ability to predict the substitution location, an

experiment was designed which trained to predict the substitution location using 25%

of the 1,000 reciprocal space images in an expanded version of the large substitution

dataset. During the training process, the size of the substituted atom was not revealed

to the classifier. Once training was complete, the remaining images were presented to the

classifier and predictions for the substitution location were collected. As with the previous

experiments, a SVM with a linear kernel, a SVM with a RBF kernel, and a random forest

were evaluated, and the results were averaged over 20 runs. Table 2.7 summarizes the

results of the experiments.

Table 2.7: Classification accuracies for substitution location experiments.

SVM (Linear Kernel) SVM (RBF Kernel) Random Forest
Accuracy 94.80% 73.76% 95.67%

Evaluation of the results reveals that the location of a defect can be predicted by

analyzing the reciprocal space image generated by a neutron scattering experiment. As was

26

the case in the experiments of Section 2.7.1, the random forest had the highest accuracy

of all of the machine learning methods tested, with a linear SVM performing almost as

well as the random forest, and the SVM with a RBF kernel once again performing poorly.

Therefore, it can be determined that the defect detection methodology can be used to not

only detect if a defect is present, but also extract information on certain properties of the

defects themselves.

2.8 Machine Learning Algorithm Evaluation

In evaluating the the machine learning algorithms used in this chapter, two criteria were

considered: classification accuracy and scalability. The relevance of classification accuracy

is self-explanatory as the goal is for the classifier to produce reliable predictions. Scalability

is important because the classifier should be able to quickly produce predictions as the

number of training keypoints grows. Analysis with respect to the training keypoint volume

is particularly important due to the fact that the number of training keypoints can be affected

by the input image size and number of input images.

As shown in the above experiments, the classification accuracy for experiments using

a random forest was consistently higher than the accuracy of a SVM with either a linear

or RBF kernel. This result was particularly notable in the 3-class defect classification

experiments. Therefore, the random forest was deemed the top performer with regard to

classification accuracy.

Regarding scalability, it has been shown by (Bottou and Lin, 2007) that the computa-

tional complexity of training a SVM is between O(N2) and O(N3) for a dataset containing

N training samples. The computational complexity of training a random forest with N

training samples has also been shown to beO(N ∗ log(N)) (Witten et al., 2011). Therefore,

the training time of the random forest will scale better than the SVM as the number of

training samples increases.

Given that the random forest performs well in both the area of accuracy and the area of

scalability, it has been determined that the random forest is the better choice of classifier

27

for use in this methodology. With this in mind, random forests will be used exclusively for

the rest of this work.

2.9 Summary

It has been shown that, for a simple crystal structure and defect set, it is possible to

use keypoint descriptors and machine learning methods to classify single defects using

reciprocal space imagery for simulated single crystal neutron scattering experiments. The

SIFT keypoint extractor has been shown to be a viable method to detect and extract relevant

feature descriptors from reciprocal space images, and it has been determined that the SIFT

descriptors are sufficient to allow for distinguishing between images containing different

defects. The experiments of this chapter also showed that the features generated by the

SIFT extractor are rich enough to detect subtle differences between crystal defect types.

In addition, it has also been shown that a machine learning algorithm can trained to

automatically classify the type of defect present in a crystal by analyzing the keypoint

features, and that certain characteristics of the defects (such as substitution location) can

be detected using the same machine learning methods. Tests revealed that random forests

perform better than SVMs overall using both accuracy and scalability as an evaluation

criteria.

28

Chapter 3

Defect Detection for Close-Packed

Crystal Structures

3.1 Introduction

While the types of defects presented in Chapter 2 were helpful in performing a preliminary

evaluation of the defect detection methodology presented in Section 2.6, the defects

simulated in the data were merely simple examples and are not likely to be of interest

in a realistic setting. In addition, the crystal structure used in testing did not simulate any

sort of realistic crystal. However, the results of the experiments using this data did in

fact prove that it is possible to identify defects using machine learning methods. Thus,

given the success of the defect detection methodology in Chapter 2, the next logical step

in development of the defect detection methodology is to evaluate its performance when

detecting more complex defects on larger, more realistic crystal structures. The goal will

be to detect two types of defects — stacking faults and short-range order defects — within

a close-packed crystal structure. The questions to be answered by the work within this

chapter are as follows:

29

1. Can the methodology of Chapter 2 be adapted for use with larger, complex crystal

structures and defects generated using a sophisticated neutron scattering simulation

package?

2. What sort of preprocessing (if any) should be done before training a classifier using

the new simulated data?

3. How do alternatives to the SIFT keypoint extractor perform within this defect

detection framework?

4. How can one evaluate the quality of the predictions made by the classifier?

3.2 Problem Background

3.2.1 Close-Packed Crystal Structures

The crystals analyzed in this chapter are close-packed crystal structures. In a close-packed

crystal, it can be assumed that the crystal contains one type of atom, and this assumption

will be made for the entirety of this chapter. Before discussing types of close-packed crystal

structures, it is first necessary to discuss notation used when describing crystal structures.

Close-packed crystals are created by stacking layers of atoms in various configurations.

A common convention in literature is to denote crystal lattice layers using letters such

as “A”, “B”, “C”, etc. and describe stacked layer sequences as character strings such as

“ABC” (Chiang et al., 1996). This layer notation will be used within the remainder of this

work.

Close-packed crystal structures can occur in two basic types: cubic close-packed

(CCP) and hexagonal close-packed (HCP) (Neder and Proffen, 2008). In a cubic close-

packed (or face centered cubic) structure, the atoms are stacked in a 3-layer sequence

such as ABCABC. In contrast, a hexagonal close-packed structure has a 2-layer ABABAB

sequence. Figure 3.1 gives examples of close-packed structures.

30

(a) Cubic Close-Packed (b) Hexagonal Close-Packed

Figure 3.1: Diagrams of close-packed crystal structures. The stacking configurations in
Figures 3.1a and 3.1b give examples of cubic close-packing and hexagonal close-packing,
respectively.

3.2.2 Defects in Close-Packed Crystal Structures

Close-packed crystal structures can contain more complex defects than the small crystal

structures evaluated in Chapter 2. The following are defects that are of particular interest

to this work:

Stacking Faults

A crystal stacking fault occurs when a close-packed crystal structure changes from CCP to

HCP or vice-versa (Neder and Proffen, 2008). Thus sequences such as ABCABABC and

ABABCAB contain stacking faults since they do not strictly follow a cubic or hexagonal

stacking structure. The number of layers involved in a stacking fault can vary, but it is

typically low compared to the total number of layers within the crystal structure. An

example of a stacking fault is illustrated in Figure 3.2.

31

Figure 3.2: Example of HCP stacking fault within CCP structure.

Short-Range Order (SRO)

A solid material can be described as crystalline if it exhibits the same periodic structure

throughout the entire crystal. This periodicity is referred to as long-range order (Carter and

Norton, 2013). However, small areas of disorder can occur within a crystal structure and

create short-range order (SRO) defects. In a SRO defect, the crystal structure is disturbed

via either displacement or occupation. This behavior can include tendencies for similar

atoms or vacancies to cluster together which are defined by correlation factors for the x-

axis and the y-axis of the planar crystal (Neder and Proffen, 2008). A positive correlation

factor leads to more clustering of atoms/vacancies whereas a negative correlation factor

causes the atoms/vacancies to intersperse throughout the crystal. Figure 3.3 gives examples

of long-range and short-range order within a simple cubic crystal structure.

32

(a) Long-Range Order (b) Short-Range Order

Figure 3.3: Examples of long-range order (left) and short-range order (right). Each green
dot represents a cell containing a single atom, and each black dot represents a vacancy.

3.3 Dataset Information

The dataset used in this chapter was simulated using the DISCUS simulation package

developed at Los Alamos National Laboratory (Proffen and Neder, 1997). The structure

simulated was a 100 cell by 100 cell planar lattice with each cell containing a single silicon

atom. Various defects and stacking configurations were introduced into the structure and

the simulated reciprocal space image was generated for the modified crystals. In order to

thoroughly test the capability of the defect detection methodology, a dataset was designed

such that it contained crystals with no defects, stacking faults, or SRO for both HCP and

CCP crystal structures. These crystal properties created a total of six possible combinations

of the close-packed structure types and defects with each of the six combinations containing

a total of 100 samples. The output from each DISCUS simulation was the reciprocal space

image for the crystal, which was stored as a monochrome intensity map. Figures 3.4 and

3.5 provide examples of the defect classes to be analyzed in this chapter for both CCP and

HCP structures, respectively.

Visual inspection of the images reveals significant challenges raised by this defect

detection problem as compared to the defect detection problem presented in Chapter 2.

33

(a) No Defect

(b) Stacking Fault

(c) Short-Range Order

Figure 3.4: Representative reciprocal space images from the classes contained within the
cubic close-packed crystal structure dataset.

34

(a) No Defect

(b) Stacking Fault

(c) Short-Range Order

Figure 3.5: Representative reciprocal space images from the classes contained within the
hexagonal close-packed crystal structure dataset.

35

The most obvious challenge is that the patterns within the reciprocal space imagery can

change depending on whether the structure is CCP or HCP. The changes between the “No

Defect” and “Stacking Fault” image classes appear to be subtle at first glance, but some of

the SRO images can be observed to contain visible changes in the image. However, what

makes the SRO dataset troublesome from a classification point of view is that some of the

visible changes can cause a CCP SRO image to look more like a HCP image containing

a stacking fault or no defect at all. Therefore, this classification problem is much more

complex than the problem presented in Chapter 2 and would be more difficult to solve via

visual inspection alone. It should be noted that the intensity scales of the images can change

from structure to structure and from defect type to defect type. However, this detail is of no

consequence in the context of this work as keypoint extraction algorithms typically require

that the intensities of the input images be rescaled to [0, 255].

3.4 Defect Detection Methodology

Given the description of the close-packed crystal structure defects presented in Sec-

tion 3.2.2 and the description of the dataset provided in Section 3.3, the goal was to

determine how to apply the defect detection methodology developed in Chapter 2 to this

new, more complex dataset. However, a few modifications to the methodology were

necessary before it could be applied to the close-packed crystal structure data.

First of all, precursory analysis of the dataset identified the need to rescale the intensity

of the reciprocal space images for the close-packed crystal structures before descriptors

could be extracted. The pixel intensity range for the images simulated using DISCUS was

much larger than that of the images in Chapter 2. This large intensity range would most

likely cause a keypoint extractor to focus in the intense Bragg peaks and ignore the textures

in the diffuse data. Therefore, some sort of scaling methodology would be necessary in

order to reduce the intensity range and focus on just the diffuse scattering data.

A second necessary modification was in the area of training the machine learning

algorithm. The size of the reciprocal space images for the close-packed crystal structures

36

was 501 pixels by 501 pixels as compared to the smaller 129 pixel by 129 pixel images

evaluated in Chapter 2. The larger image sizes could lead to a larger number of

keypoints being generated as compared to the small structure tests in Chapter 2 thus greatly

increasing the required training times and slowing down the defect detection system overall.

Therefore, it was necessary to develop a scheme to reduce effect of the number of keypoints

generated for these larger images.

In addition to the implementation of the above changes, alternatives to the SIFT

keypoint extraction algorithm discussed in Chapter 2 were evaluated. The goal in testing

these alternatives to SIFT was to determine if the accuracy or speed of the defect detection

methodology could be improved by changing the keypoint extraction algorithm. This topic

is discussed in more depth in later sections. In light of the proposed adjustments to the

algorithm, the flowchart presented in Chapter 2 has been revised and is given in Figure 3.6.

Figure 3.6: Flowchart for the revised defect detection methodology. The step highlighted
in yellow was a necessary addition to the methodology presented in Chapter 2, and the
step highlighted in green required was modified in order to address the larger volume of
keypoints detected in the large structure data.

3.5 Data Preprocessing

As mentioned in Section 3.4, one particular question to be answered was how to handle the

large scale of the reciprocal imagery for the close-packed crystal structures. The goal for

the feature extraction step was to capture the diffuse scattering textures in order to detect

any potential defects within the crystals. However, precursory experimentation with the

SIFT keypoint extractor further revealed that the large intensity of the Bragg peaks within

the images made it difficult for the SIFT extractor to detect keypoints within the diffuse

scattering regions of the images. Such problems could also potentially arise with other

keypoint extractors. Therefore, it was necessary to develop a methodology to preprocess

37

the data in order to reduce the range of the intensities before any defect detection could

be performed. Figure 3.7 gives a few examples of unscaled reciprocal space images that

were used in the preprocessing experiments, and Figure 3.8 gives an example of the type

of scaling desired as the result of this process. In the figure, intensity of the diffuse textures

is increased so they are more visible to the keypoint extractor.

(a) (b)

Figure 3.7: Unscaled reciprocal space images.

(a) Before Scaling (b) After Scaling

Figure 3.8: Illustration of the effect of scaling on a sample reciprocal space image.

Further analysis of the images revealed that the pixel intensity range was on the order

of [0, 106]. However, the distribution of the pixel intensities across the range was most

definitely not uniform. Figure 3.9 is a log plot for a 10-bin histogram of the pixel

intensities. It can be observed from the histogram that there are very few high-intensity

38

pixels, and a majority of the pixels fell in the low-intensity bins. With this in mind, the

problem to be solved was determining the best way to rescale these high-intensity pixels

without introducing texture distortions into the image. In order to accomplish this, it was

determined that an intensity threshold should be calculated for the image and all pixels with

intensities above the threshold should be rescaled in some manner. Such a solution would

require that a threshold intensity be calculated in a data-driven manner such that it could be

applied to an image without the need to be re-calibrated for each image.

Figure 3.9: A 10-bin histogram (logarithm scale y-axis) for pixel intensities within a
representative reciprocal space image.

In order to assist with the development of this data-driven scaling methodology, an

interactive data visualization tool was created to facilitate the quick evaluation of a series

of scaling methodologies for a reciprocal space image. A screenshot of this tool is provided

39

in Figure 3.10. The tool allows a user to load a reciprocal space image and use sliders

to set the upper and lower intensity thresholds for a reciprocal space image and see the

effects of the threshold on the image. The thresholds can be modified and the resulting

scaled images displayed in real time. In addition, features are included that allow a user

to calculate keypoints for an image and evaluate the effect of the threshold selection on

the keypoint detector. Figure 3.11 shows the keypoint plotting mode for the tool. Other

features are also available such as the ability to modify the color scale for the image and

view the statistics for the pixel intensities. A menu containing a few scaling presets allows

for quick analysis of multiple images. New presets can also be added by modifying the

tool’s code. The available threshold mode options “clamp” and “slice” control how pixels

above the selected upper threshold are to be handled. Selecting the “clamp” option causes

the program to set all pixels above the selected upper threshold to be equal to the threshold.

Mathematically, this operation is equivalent to pnew = min(p, t) for pixel intensity p

and threshold intensity t. The “slice” option instead zeros the intensities of pixels with

intensities above the threshold. Other options are also available via checkboxes in the

left-hand panel that apply a log scale to the image intensities, display the slider values as

percentages, and also apply a log scale to the slider movement for fine-tuned adjustment.

Given the features provided by the tool, a typical use case would be to load a reciprocal

space image into the viewer window and use the sliders to interactively create and evaluate

the keypoint detection for different threshold values and keypoint extractors. As the user

evaluates thresholds for the image, the colormap selection menu could be used to apply

various color scales in order to better visualize the textures in the data. The other features

provided such as the threshold mode, checkbox options, scaling presets, and the data

statistics box are available to make the overall experience more convenient for the user.

Using this tool, a few types of thresholds were evaluated. The initial threshold candidate

tested set the threshold at a fixed percentage of the maximum intensity. This method was

effective in some cases, but did not perform well if the scale of the intensity range for

the image changed significantly. As shown in Figure 3.12a, setting the threshold as a

fixed percentage of the maximum intensity properly scaled some images and accentuated

40

Figure 3.10: Screenshot of the reciprocal space image analysis tool displaying the intensity
map for the reciprocal space image.

the diffuse scattering textures. However, images such as the one in Figure 3.12b set the

threshold too low and caused the diffuse scattering textures to be “washed out”.

In order to address this problem, the decision was made to set the threshold based on

the median or mean intensity within an image. After extensive evaluation of the keypoint

detection for the candidate thresholds, it was determined that a threshold of the mean pixel

intensity for the image was sufficient to reduce the intensity of the Bragg peaks while not

significantly affecting the textures within the diffuse scattering data. Evaluation of the

keypoint detection for the images also revealed that the “slice” threshold option discussed

above led to the detection of additional keypoints which did not constructively contribute to

the defect detection process. This issue was due to the fact that the zeroing of values outside

of the threshold boundaries introduced new irrelevant textures into the image instead of

highlighting the textures within the threshold boundaries. Therefore, the “clamp” option

41

Figure 3.11: Screenshot of the keypoint plotting feature for the reciprocal space image
analysis tool. The colored circles within the grayscale intensity image indicate the center
of a keypoint identified by the keypoint detector.

was selected for use in all experiments. Figure 3.13 shows the images given in Figure 3.7

scaled using this methodology. After scaling the images, it becomes apparent that there

were subtle details within the diffuse data that were not visible in the images before the

scaling was performed.

The code for the tool was written entirely in Python (van Rossum and Drake, 2011). The

PyQt4 library (Harwani, 2011) was used to create the graphical user interface for the tool,

Python bindings for the OpenCV library (Bradski, 2000) were used for keypoint extraction,

and the matplotlib library (Hunter, 2007) was used to plot the reciprocal space images.

42

(a) (b)

Figure 3.12: Illustration of the shortcomings of applying a fixed percentage threshold to
the images from Figure 3.7. Using a threshold that is a fixed percentage of the maximum
produces sharp diffuse scattering textures in Figure 3.12a, but does not perform as well for
the image in Figure 3.12b. These images were created by defining the threshold T to be
1% of the maximum intensity in the original image and scaling all pixel intensities I such
that Inew = min (I, T).

(a) (b)

Figure 3.13: Images from Figure 3.7 scaled using a threshold of the mean intensity. These
images were created by defining the threshold M to be mean intensity for the original
image and scaling all pixel intensities I such that Inew = min (I,M).

3.6 Image Keypoint Extraction

As was the case in Chapter 2, keypoint extraction was used to extract features from the

large structure reciprocal space images. In addition to again evaluating the SIFT keypoint

extractor discussed in Section 2.3.1, other keypoint extraction methods were evaluated and

43

compared to SIFT. This section gives a brief overview of the key features of each keypoint

extraction algorithm, but readers seeking more specific details on these methods should

refer to the references for these algorithms provided in the following sections.

3.6.1 SURF: Speeded Up Robust Features

SURF is an alternative to SIFT that focuses on quicker execution speed and better feature

quality (Bay et al., 2008). The SURF algorithm first uses an integer approximation

method to speed up the keypoint detection methodology developed by SIFT. A descriptor

is then calculated for a 20 pixel by 20 pixel patch centered at each keypoint. This patch

is subdivided into a 4 by 4 grid, and sums of the horizontal and vertical Haar wavelet

responses and their absolute values are calculated to generate a 4-dimensional vector for

each grid cell. These 4-dimensional vectors for all 16 grid cells are then concatenated to

create a 64-dimensional descriptor for the keypoint.

3.6.2 ORB: Oriented FAST and Rotated Brief Features

The ORB feature extractor was developed as an alternative to SIFT and SURF which

boasts more robustness to image noise and real-time execution speeds (Rublee et al.,

2011). It uses a combination of an oriented FAST (oFAST) corner detector and a rotation-

aware BRIEF (rBRIEF) texture descriptor to detect keypoints and generate corresponding

descriptors. (For more details on the implementation of oFAST and rBRIEF, interested

readers can refer to the analysis of the ORB algorithm presented in Appendix A.) Once the

keypoint locations have been identified by oFAST, ORB then selects theN “best” keypoints

according to the Harris corner measure (Harris and Stephens, 1988a) and extracts rBRIEF

texture features for a 31 pixel by 31 pixel patch centered at each of theN keypoint locations.

The result is a 256-bit binary descriptor for each keypoint.

44

3.7 Machine Learning

As noted in Chapter 2, comparison of SVMs and random forests revealed that random

forests performed better in the preliminary defect detection tests. Therefore, random forests

were used exclusively for classification in this chapter.

However, even though random forests had good performance in the tests of Chapter 2,

there were still obstacles to overcome when performing classification for the close-packed

crystal structures. As noted in Section 3.4, the reciprocal space images for the close-packed

crystal structures had much larger dimensions than the images in Chapter 2. As a result,

more keypoints were generated for by the reciprocal space images for the close-packed

crystal structures. Initial testing revealed that this increase in keypoints greatly increased

the time required to perform classification for the new dataset as compared to the dataset

evaluated in Chapter 2.

In order to address this larger volume of keypoints, the training process was modified

such that the random forest was trained using a only a small, randomly-sampled subset of

the detected keypoints for a given image. This modification greatly reduced the amount

of time required to train the model without affecting the accuracy of the classifier in a

significant way. During the testing phase all keypoints were assigned labels for a new

testing image and a final classification was made using a majority vote all keypoints

detected within the image as was the case in the experiments of Chapter 2.

3.8 Experiments

Using the modified defect detection methodology described in Section 3.4, a series of

experiments was conducted to evaluate the accuracy of the methodology when detecting

defects in the larger, more complex close-packed crystal structures, and to evaluate the

quality of the descriptors generated by the keypoint extractors.

Each experiment tasked the random forest with learning to label each reciprocal space

image as belonging to one of three disjoint classes: “no defect”, “stacking fault”, or “SRO”.

45

Note that there was no distinction made between whether the crystal was HCP or CCP in

these classes. It was left up to the machine learning algorithm to learn to ignore the whether

the crystal was HCP or CCP, and to focus solely on the presence of defects within the

crystal. For each input image, the mean of the pixel intensity was calculated for the image

and all pixels with an intensity higher than the mean intensity were set equal to the mean.

After this upper bound was placed on the maximum intensity for the image, the intensities

for the resulting image were then rescaled linearly to the range [0, 255] in preparation for

feature extraction. In order to accelerate the classifier training process in the experiments,

the machine learner only used 10% of the extracted keypoints from a given image as

training inputs. All three of the keypoint extraction methodologies discussed in Section 3.6

were evaluated in a series of three experiments, and the results of each experiment were

aggregated over 100 independent trials in order to filter any noisy experimental results.

Results for the SIFT, SURF, and ORB experiments are available in Tables 3.1, 3.2, and 3.3,

respectively.

Table 3.1: Aggregated confusion matrix for defect detection experiment using SIFT
keypoint descriptors.

Actual
Class

Predicted
Class

No Defect Stacking Fault SRO Recall

No Defect 17314 669 52 96.00%
Stacking Fault 1015 16967 0 94.36%

SRO 122 107 17754 98.73%
Precision 93.84% 95.63% 99.71% 96.36%

Analysis of the tables shows that the revised defect detection methodology performed

very well in classifying the presence of a defect (or lack thereof) within the crystal

structures. In addition, all of the keypoint extraction methods had very high classification

accuracy with SIFT yielding the highest accuracy, followed by ORB and SURF. Therefore,

at this point one could potentially determine that SIFT is the “best” of the three

46

Table 3.2: Aggregated confusion matrix for defect detection experiment using SURF
keypoint descriptors.

Actual
Class

Predicted
Class

No Defect Stacking Fault SRO Recall

No Defect 17791 208 0 98.84%
Stacking Fault 744 17286 0 95.87%

SRO 1459 1347 15165 84.39%
Precision 88.98% 91.75% 100.0% 93.04%

Table 3.3: Aggregated confusion matrix for defect detection experiment using ORB
keypoint descriptors.

Actual
Class

Predicted
Class

No Defect Stacking Fault SRO Recall

No Defect 17656 328 43 97.94%
Stacking Fault 1070 16952 1 94.06%

SRO 766 1795 15389 85.73%
Precision 90.58% 88.87% 99.71% 92.59%

methodologies to use with this type of reciprocal space imagery due to its high accuracy.

However, a discussion on the evaluation of the keypoint extraction algorithms will be

deferred until Section 3.10.

3.9 Prediction Evaluation Criteria

As mentioned in Chapter 2, the tie-breaking for the voting scheme in experiments of

Section 2.7 was arbitrary. There was opportunity for improvement in this area, and some

mechanism needed to be developed to address the unlikely event of a tie occurring during

47

the keypoint voting step. This section discusses requirements for such a methodology for

handling ties and proposes a potential solution.

As a first step in addressing how to handle a tie, it had to be determined exactly what

should be the purpose of the tie-breaking mechanism. The primary goal of the defect

detection methodology presented in this work is to reduce the amount of human evaluation

that is necessary to detect defects within crystals. However, at this stage it is unrealistic to

assume that a computational methodology could be developed which can detect any type

of defect with perfect accuracy. Therefore, there should still be a mechanism in place by

which a human expert can evaluate the quality of the predictions made by the classifier

and flag predictions for analysis by a human expert if certain prediction confidence criteria

are not met. This need is particularly relevant in the case of tie-breaking as a generalized

machine learning-based methodology will not be acquainted with domain knowledge in

crystallography which may be used by a human expert to classify a defect within a crystal.

Therefore, when considering a label that has been assigned to a sample, the real

question to be asked is how much confidence should be placed in the label derived from

the keypoint voting scheme. It is unreasonable to assume that a label assigned via tie (or

near-tie) between two or more classes is as reliable as a label assigned via a unanimous

vote. Instead, the classification provided via an “uncertain” classification should be used

more as a heuristic which can guide a human expert in classification of “difficult” samples

within a dataset. Thus instead of placing the burden of tie-breaking on the label assignment

step, a means to describe the confidence of the vote was implemented such that every label

assignment was accompanied by a confidence measure. In the experiments, this confidence

measure was calculated as the percentage of keypoints which received the “winning” vote

during the keypoint voting step. The advantage that such a confidence measure offered over

a heuristic for assigning a label was that a confidence measure allows for the quality of label

assignments to be measured. Therefore, for an experiment a researcher could potentially

define a minimum confidence requirement for labels assigned to samples under analysis.

If the confidence for an assigned label did not meet the minimum confidence threshold,

48

it could be flagged for for review by human experts. Table 3.4 summarizes the average

confidence for the experiments presented in Section 3.8.

Table 3.4: Mean confidence for defect detection experiments.

Keypoint Extractor Mean Confidence
SIFT 75.98%
SURF 81.61%
ORB 79.39%

Analysis of the average confidence measure for each experiment shows that the SURF

experiment generated the highest confidence measures while the SIFT experiment yielded

the lowest average confidence. It should be noted that this ordering is the exact opposite

of the keypoint extraction algorithms when they were ranked by classification accuracy in

Section 3.8. This observation is interesting because it shows that a high average confidence

is not necessarily required to produce a high classification accuracy. However, a higher

average confidence would definitely be preferred as it would reduce the number of samples

that are flagged for human evaluation.

3.10 Keypoint Extractor Evaluation

Evaluation for keypoint extractors was conducted in a similar manner to the evaluation

of the machine learning algorithms in Chapter 2. The keypoint extractors were evaluated

based on two criteria: feature quality and extractor scalability.

The feature quality was evaluated with respect to the ability of the machine learning

algorithm to use the features to distinguish between the different defect classes. In this

regard, the feature quality for the three extractors was roughly the same with a slight

advantage going to the SIFT extractor due to a slightly higher classification accuracy

observed in the SIFT experiments.

Regarding extractor scalability, due to the fact that features are extracted on an image-

by-image basis, the scalability of each feature extraction algorithm will be with respect to

49

the image dimensions. (Drews et al., 2011) has shown that the complexity of the SIFT

and SURF algorithms as the image dimensions increase is O(mn + k) for an image with

dimensions m pixels by n pixels containing k keypoints. However, this complexity can

be simplified to O(mn) since mn is much less than k in the images used in this work.

Similarly, analysis of the complexity of the ORB algorithm given in Appendix A reveals

that the simplified complexity of the ORB algorithm is also O(mn) for an image with

dimensionsm pixels by n pixels. Thus the scalability of the SIFT, SURF, and ORB methods

are approximately the same with respect to the image dimensions.

However, this observation that the scalability of the keypoint extractors is the same with

respect to the image size does not imply that their execution time is the same when used to

detect keypoints for a series of images. Figure 3.14 shows runtime benchmark graphs for a

single run of the classification methodology using each of the three keypoint extraction

algorithms. The computer used in these experiments utilized a 2.66 GHz quad core

processor with 10 GB of RAM. Analysis of the graph reveals some interesting observations

regarding keypoint extraction.

Figure 3.14: Runtime graphs for the experiments described in Section 3.8.

50

First of all, even though the runtime complexity of the keypoint extraction algorithms

is the same as the image size increases, the amount of time required for each algorithm to

extract keypoints for a set of images varies. The benchmark graph in Figure 3.14 shows that

tests using ORB spend the smallest amount of time performing keypoint extraction with

SIFT requiring approximately 27 times the extraction time required by ORB and SURF

requiring the most time at 30 times the extraction time of ORB. With this in mind, the ORB

algorithm has a distinct advantage over the other methods as it runs faster than the other

methods while scaling at approximately the same rate as the image dimensions increase.

The second observation is that the choice of keypoint extraction algorithm affects the

running time for the subsequent steps of the methodology (e.g., training, classification,

and label assignment). This difference in running times is due to the fact that the

dimensionalities of the descriptors generated by the keypoint extractors are different for

all three algorithms: ORB has a 32-dimensional descriptor (256 binary descriptors stored

as 32 8-bit integers), SURF has a 64-dimensional descriptor, and SIFT generates a 128-

dimensional descriptor. A longer descriptor increases the complexity of the problem to

be solved by the machine learning algorithm which leads to longer execution times for

training the classifier and assigning labels to new images. It is reasonable to evaluate

longer descriptors which could potentially contain more information and lead to higher

classifier accuracies, but analysis of the results for the experiments shows that there is not a

substantial benefit offered by using a longer descriptor. It should be noted that SIFT did in

fact produce a slightly higher accuracy than ORB in the experiments, but this improvement

in accuracy via SIFT was at the cost of requiring approximately 25 times more processing

time than was required by ORB for feature extraction, training, classification, and label

assignment. Therefore, when choosing a keypoint extractor it is necessary to consider the

costs/benefits of each method and determine if a slight increase classification accuracy is

worth the cost of a longer execution time.

51

3.11 Summary

The discussion and experiments of this chapter has shown that the crystal defect detection

methodology developed in Chapter 2 for a simple single crystal neutron scattering dataset

can be adapted for use with data simulated by a sophisticated neutron scattering simulator.

In addition, it has been shown that the methodology is also capable of detecting and

distinguishing between more complex types of defects within a larger crystal structure.

Analysis of the need for preprocessing the neutron scattering data was also performed,

and a methodology to scale the data in preparation for processing by the defect detection

methodology was developed. This methodology was designed such that it reduced the

intensity of the Bragg peaks within the reciprocal space imagery while accentuating the

diffuse scattering patterns which describe the defects within the crystal. A tool has been

developed using Python which assisted with the development of this scaling methodology.

Alternatives to the SIFT keypoint extractor were evaluated, and the strengths and

weaknesses of the extractors were evaluated and discussed. A comparison of the

classification accuracies resulting from the use of the extractors was presented as well as a

comparison of the scalability of the keypoint extraction algorithms themselves. The result

of this analysis was the conclusion that the keypoint extractor should be selected based

on whether the user is wanting to maximize accuracy or minimize the time required to

complete the classification.

The question of tie-breaking in the keypoint voting scheme and prediction confidence

were also discussed. An in-depth inquiry into the goals for the use of the defect classifier

and the role of human experts in this process was also presented. The result of this analysis

yielded the development of a measure by which a confidence value can be assigned to

a prediction for the defect present within a sample. This confidence measure can be used

human experts to identify samples for which the methodology is uncertain of the prediction

and flag these samples for human evaluation.

52

Chapter 4

Conclusion and Future Work

4.1 Conclusion

It has been shown in this work that crystal defects can be detected via computational

analysis of reciprocal space imagery generated by simulated single crystal neutron

scattering experiments. The proposed defect detection methodology used a keypoint-

based feature extractor to generate texture features describing the most relevant portions

of the images. It then used a supervised machine learning algorithm to analyze the feature

vectors and automatically classify defects. The methodology trained the classifier using

individual keypoint features extracted from the training images and then used a keypoint

voting scheme to produce classifications for new testing images.

In addition to developing the defect detection methodology, the choice of machine

learning algorithm used to perform classification within the methodology was explored and

advantages of certain classifiers were noted. A number of keypoint-based image feature

extraction methods were also evaluated and were shown to generate features from the

reciprocal space images that were rich enough to describe the aspects of the images that

indicate the presence of a defect within the crystal. The advantages of specific keypoint

extraction algorithms were also assessed. As part of the deployment process for the

keypoint feature extractors, a preprocessing methodology was developed for the reciprocal

53

space images that reduced the intensity of the Bragg peaks within the image and caused the

diffuse textures to be more pronounced. A software tool was developed that assisted with

the development of this preprocessing scheme.

In order to validate the defect detection methodology presented in this work, it was

tested on a series of increasingly difficult problems using reciprocal space data simulated

using multiple techniques. These problems started with a small crystal structure containing

toy defects and then scaled up to a larger structure containing more complex defects. As

the defect detection problems became more difficult, new insight was gained into how to

improve the defect detection process and which computational methods performed the best

overall. Areas of future work were also identified during the experimentation process and

are presented in the next section.

4.2 Future Work

The following topics are areas of interest that could be potential topics of ongoing research

in the area of computational crystal defect detection within single crystal neutron scattering

experiments.

4.2.1 Real Data Analysis

The most relevant topic of future work is testing the defect detection methodology with

data generated by real scattering experiments. All of the data in this work was simulated,

and it was thus free from noise that could occur in a real scattering experiment. Therefore,

it would be instructive to test the defect detection methodology on a dataset consisting

of experimentally generated reciprocal space images in order to further evaluate the

performance of the methodology and adapt it for use with experimental data if necessary.

54

4.2.2 Experimentation with Multiple Defects

The crystal structures analyzed in this work were limited to only one type of defect for the

entire crystal structure. An interesting exercise would be to relax this limitation and allow

for multiple types of defects to be present within a single crystal. Given that the reciprocal

space images are magnitude maps of the neutron scattering patterns, it is unlikely that the

patterns generated by a combination of multiple types of defects will translate to a linear

combination of the individual scattering patterns for each defect. Therefore, much work

will need to be done in order to determine the best way to handle multiple defects within a

single crystal.

4.2.3 Defect Texture Analysis

The methodology developed in this work analyzed textures within patches extracted from

reciprocal space images and proved to work well for the datasets that were tested in the

experiments. However, it is not clear which properties of the textures the classifier should

deem important when designating a keypoint descriptor as containing a specific type of

defect. Analysis of the textures within the patches identified by the keypoint detector could

potentially answer a number of questions about texture “signatures” that are unique to a

certain type of defect and could be used to more reliably identify a certain type of defect

within a crystal. Such analysis could also be useful in solving problems such as the 3-

class experiments presented in Section 2.7. In these experiments, there was an issue with

the classifier becoming confused when distinguishing between small and large substitution

defects. Analysis of the texture patches extracted by the keypoint detector could potentially

assist in developing a means to reduce the amount of confusion between the classes in these

experiments.

55

4.2.4 Sensitivity Quantification

The experiments in this work evaluated a number of types of defects of varying sizes.

An interesting exercise would be to quantify exactly how sensitive the defect detection

methodology is to the severity of the defect within the crystal. While this may seem

like a straightforward problem, there may be many parameters that would need to be

considered when constructing tests for evaluation of the sensitivity of the defect detection

methodology. For example, in the case of stacking faults one would have to first determine

if it is important to consider stacking faults of n consecutive layers as equivalent to n single-

layer faults that are not consecutive. If these two cases cannot be considered as equivalent,

the question to be answered is which sequence is more difficult for the classifier to detect.

Similar questions would more than likely arise with other types of defects as well. Another

area to be considered is the sensitivity with respect to the specific atom types contained

within the crystal. It is currently unknown whether crystals containing a particular element

would be more suitable for use with this methodology as compared to crystals containing

other elements.

4.3 Summary of Contributions

The following is a summary of contributions made by this dissertation:

1. Evaluation of a data processing methodologies for use with simulated reciprocal

space imagery for single crystal diffuse neutron scattering experiments.

2. Analysis of characteristics of reciprocal space imagery dataset.

3. Development of scaling methodology for use with simulated reciprocal space

imagery.

4. Creation of a graphical user interface that can be used to assist with analysis of the

intensities within reciprocal space images.

56

5. Formalization of a methodology that performs automatic defect detection within

crystals by analyzing reciprocal space imagery. The methodology was evaluated us-

ing simulated single crystal diffuse neutron scattering experiments for the following

defect classes:

(a) Identification of simple defect types for small simulated crystal structures.

(b) Prediction of substitution location for small simulated crystal structures.

(c) Detection of defects within simulated close-packed crystal structures.

6. Comparison of keypoint extractor and machine learner performance in the context of

the defect detection methodology presented in this work.

7. Runtime complexity analysis for the ORB feature extraction algorithm.

57

Bibliography

58

Ayers, B. and Boutell, M. (2007). Home interior classification using sift keypoint

histograms. In Computer Vision and Pattern Recognition, 2007. CVPR ’07. IEEE

Conference on, pages 1–6. 8

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features

(SURF). Comput. Vis. Image Underst., 110(3):346–359. 44

Borchardt-Ott, W. (2012). Crystallography: An Introduction. Springer-Verlag Berlin

Heidelberg. 2

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, COLT ’92, pages 144–152, New York, NY, USA. ACM. 15

Bottou, L. and Lin, C.-J. (2007). Support vector machine solvers. In Bottou, L., Chapelle,

O., DeCoste, D., and Weston, J., editors, Large Scale Kernel Machines, pages 1–28. MIT

Press, Cambridge, MA. 27

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools. 21, 42

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140. 17

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32. 17

Butler, B. D. and Welberry, T. R. (1992). Calculation of diffuse scattering from

simulated disordered crystals: a comparison with optical transforms. Journal of Applied

Crystallography, 25(3):391–399. 3, 4, 17

59

Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., and Fua, P. (2012).

BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 34(7):1281–1298. 65, 67

Carter, C. and Norton, G. (2013). Ceramic Materials: Science and Engineering.

SpringerLink : Bücher. Springer. 32

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software available

at http://www.csie.ntu.edu.tw/˜cjlin/libsvm. 21

Chiang, Y., Birnie, D., and Kingery, W. (1996). Physical Ceramics: Principles for Ceramic

Science and Engineering. MIT series in materials science and engineering. Wiley. 2, 30

Drews, P., de Bem, R., and de Melo, A. (2011). Analyzing and exploring feature detectors

in images. In Industrial Informatics (INDIN), 2011 9th IEEE International Conference

on, pages 305–310. 50

Egami, T. and Billinge, S. (2012). Underneath the Bragg Peaks: Structural Analysis of

Complex Materials. Pergamon Materials Series. Elsevier Science. 4, 6, 8

Evans, R. (1964). An Introduction to Crystal Chemistry. Cambridge University Press. 2

Harris, C. and Stephens, M. (1988a). A combined corner and edge detector. In Proceedings

of the Alvey Vision Conference, pages 23.1–23.6. Alvety Vision Club. 44

Harris, C. and Stephens, M. (1988b). A combined corner and edge detector. In Alvey vision

conference, volume 15, page 50. Manchester, UK. 66

Harwani, B. M. (2011). Introduction to Python Programming and Developing GUI

Applications with PyQT. Course Technology Press, Boston, MA, United States, 1st

edition. 42

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing In Science &

Engineering, 9(3):90–95. 42

60

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int. J.

Comput. Vision, 60(2):91–110. 13

Martin, B. W. and Vatsavai, R. R. (2013). Image change detection via ensemble learning.

volume 8743, pages 874305–874305–7. 8

Neder, R. B. and Proffen, T. (2008). Diffuse Scattering and Defect Structure Simulations:

A Cook Book Using the Program DISCUS. Oxford University Press, Inc., New York,

NY, USA. 30, 31, 32

Nield, V. and Keen, D. (2001). Diffuse Neutron Scattering from Crystalline Materials.

Oxford science publications. Clarendon Press. 4

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–2830. 21

Proffen, T. and Neder, R. B. (1997). DISCUS: a program for diffuse scattering and defect-

structure simulation. Journal of Applied Crystallography, 30(2):171–175. 33

Pynn, R. (2008). Neutron scattering – A non-destructive microscope for seeing inside

matter. In Liang, L., Rinaldi, R., and Schober, H., editors, Neutron Applications in

Earth, Energy and Environmental Sciences. Springer. 4, 6

Rosten, E. and Drummond, T. (2005). Fusing points and lines for high performance

tracking. In IEEE International Conference on Computer Vision, volume 2, pages 1508–

1511. 65

Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection.

In European Conference on Computer Vision, volume 1, pages 430–443. 65

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: An efficient alternative

to SIFT or SURF. In International Conference on Computer Vision, Barcelona. 44, 64

61

Schober, H. (2008). Neutron scattering instrumentation. In Liang, L., Rinaldi, R., and

Schober, H., editors, Neutron Applications in Earth, Energy and Environmental Sciences.

Springer. 2

Sun, P.-L., Zhao, Y., Cooley, J., Kassner, M., Horita, Z., Langdon, T., Lavernia, E.,

and Zhu, Y. (2009). Effect of stacking fault energy on strength and ductility of

nanostructured alloys: An evaluation with minimum solution hardening. Materials

Science and Engineering: A, 525(12):83 – 86. 1

van Rossum, G. and Drake, F. L. (2011). The Python Language Reference Manual.

Network Theory Ltd. 42

Welberry, T. R. and Goossens, D. J. (2014). Diffuse scattering and partial disorder in

complex structures. IUCrJ, 1(6):550–562. 1, 6

Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd

edition. 27

Zhan, H., Zhang, Y., Bell, J. M., and Gu, Y. (2014). Thermal conductivity of Si nanowires

with faulted stacking layers. Journal of Physics D: Applied Physics, 47(1):015303. 1

62

Appendix

63

Appendix A

Complexity Analysis of the ORB

Keypoint Extraction Algorithm

A.1 Introduction

This appendix provides additional analysis of the ORB keypoint extraction algorithm as

described in (Rublee et al., 2011). The overall goal of this analysis is to determine the

computational complexity of the ORB algorithm in order to support the comparison to

the SIFT and SURF algorithms given in Section 3.10. The structure of this appendix is

as follows: A detailed description of the ORB algorithm is presented, the computational

complexities of the different components of the algorithm are calculated and used to

determine the overall computational complexity of the ORB algorithm, assumptions are

discussed which can be used to simplify the ORB complexity calculation, and finally a

conclusion is presented summarizing the findings of this appendix.

A.2 ORB Algorithm Summary

In general, a keypoint extraction algorithm comprises of two phases: a keypoint detection

phase, and a keypoint extraction phase. The ORB algorithm utilizes modifications two

64

different algorithms to separately handle the detection and extraction phases. For keypoint

detection, ORB uses oFAST which is an oriented variant of the FAST corner detection

algorithm (Rosten and Drummond, 2005, 2006). Once the oFAST detection algorithm

has produced a set of keypoints for the image, ORB uses a rotation-aware version of the

BRIEF feature descriptor (Calonder et al., 2012) called rBRIEF to generate a descriptor

that describes the texture of a 31 pixel by 31 pixel patch centered at the keypoint location.

The following subsections describe details of the oFAST and rBRIEF algorithms relevant

to the calculation of the computational complexity of the ORB algorithm. As mentioned

before in Chapter 3, interested readers seeking more details on the ORB algorithm should

refer to the references provided in this appendix.

A.2.1 oFAST: Oriented FAST

FAST is an algorithm that detects corners within a monochrome image by comparing

the intensity of a pixel being tested for “cornerness” to surrounding pixels within the

image (Rosten and Drummond, 2005, 2006). This is accomplished by measuring the

intensities of a “ring” of pixels surrounding the pixel in question. If the intensities of a

segment of N contiguous pixels that lie on the ring differ from the center pixel by more

than a set difference threshold, then the region surrounding the pixel is considered to be

a corner. The size of the ring that is used by the FAST algorithm can vary, but a ring

containing 16 pixels and a segment of length N = 9 contiguous pixels is used in the ORB

algorithm. Figure A.1 illustrates the detection of a corner in the FAST step. In the figure,

the pixel being tested is marked by a white frame. Pixels exceeding the difference threshold

are marked by blue frames, and pixels not exceeding the difference threshold are marked

by red frames. There are 11 pixels that exceed the difference threshold, and therefore FAST

will designate a pixel patch centered at the white-framed pixel as a corner.

One shortcoming of the FAST algorithm is that there is not a measure of the cornerness

for the detected corners. Thus the authors of the ORB algorithm noted large responses by

FAST along edges as well as corners. In order to address this issue, the ORB algorithm

65

Figure A.1: Corner detection using FAST.

ranks all detected “corners” using a Harris corner measure (Harris and Stephens, 1988b).

Once the detected corners have been ranked by cornerness using the Harris measure, the

ORB algorithm selects the top k as the keypoints for the image. In addition, ORB generates

scale-invariant features by using a scale pyramid containing S scales to generate stable

keypoints for varying levels of blurring for the image.

In order to ensure rotation invariance of the keypoints detected in the image, the

orientation of the keypoint needs to be considered during the feature generation step. The

standard FAST algorithm does not provide a means to measure the corner orientation,

and thus ORB algorithm calculates an intensity centroid for each keypoint that it uses to

determine the orientation of the corner. This provides the “oriented” component of the

“oriented FAST” algorithm.

66

A.2.2 rBRIEF: Rotation-Aware BRIEF

Once the keypoints and their orientations have been detected by the oFAST algorithm,

descriptors need to be extracted that describe the texture of the image at the keypoint

location. ORB uses a variant of the BRIEF feature extraction algorithm (Calonder

et al., 2012) to generate features for the detected keypoints. The BRIEF algorithm

generates pixel location pairs within a patch centered at the keypoint location. These

pixel pairs are generated such that pixel coordinates (x, y) are on the distribution

(X, Y) ∼ i.i.d Gaussian(0, 1
25
S2) where S is the size of the square pixel patch. In the

case of rBRIEF, the patch size is typically chosen as S = 31, and a total of 256 pixel pairs

are generated for each patch.

After the pixel pairs are generated, rBRIEF extracts pixel patches centered at each

keypoint location detected by oFAST and smooths them using a 5 pixel by 5 pixel window.

For each pixel patch, rBRIEF uses a rotation matrix to “steer” the positions of the pixel

pairs in the direction of the patch orientation detected by oFAST. This steering step is a key

feature of rBRIEF and improves on the standard BRIEF feature via the addition of rotation

invariance.

Once the pixel pairs have been generated and steered, rBRIEF then defines the binary

features to be comparisons of the intensities of the pixel pairs using the comparison rule

given in Equation A.1. In the equation, τ is the binary feature value, p is the pixel patch,

p (x) is the pixel intensity of pixel at location x, and p (y) is the pixel intensity of pixel at

location y.

τ (p;x,y) =

1, if p (x) < p (y)

0, if p (x) ≥ p (y)

(A.1)

Finally, the binary feature vector is created by creating a vector of 256 bits containing

the binary features created by the comparisons. The equation used to achieve this is given

in Equation A.2.

67

fn(p) =
∑

1≤i≤n

2i−1τ (p;xi,yi) (A.2)

A.3 ORB Complexity Analysis

Now that the components of the ORB algorithm have been described, the computational

complexity of the ORB algorithm can be determined. In order to assist with the analysis

of the components of the ORB feature extraction process, pseudocode for the oFAST and

rBRIEF algorithms is provided in Algorithms 1 and 2, respectively.

Algorithm 1 oFAST Algorithm
for each scale S do

for each pixel at location (x, y) do
Compare intensity of pixel to 16 pixel ring surrounding it
Designate pixel as corner if 12 contiguous pixels in ring are lighter/darker than it

end for
Rank cornerness of all d detected corners using Harris corner measure
Designate k highest ranked corners as keypoints
for each keypoint do

Detect orientation of keypoint using intensity centroid
end for

end for

Algorithm 2 rBRIEF Algorithm
Generate i.i.d. sample pairs using Gaussian distribution
for each keypoint detected by oFAST do

Extract a 31x31 patch at keypoint center
Smooth patch using 5 by 5 window
“Steer” sample pairs toward orientation detected by oFAST
Calculate feature vector from sample pair comparisons

end for

Inspection of the oFAST algorithm in Algorithm 1 reveals that the first inner for

loop evaluates the cornerness of each pixel in the image. Therefore, the worst-case

computational complexity of the loop is O(mn) for an image with dimensions of m pixels

by n pixels. This loop is followed by a ranking step that involves sorting the corners

68

the Harris corner measure. The ranking step involves sorting the corners and has the

complexity O(d ∗ log(d)) for d detected corners. Finally, the top k corners are selected as

keypoints and the orientation is detected. Orientation detection is a constant-time operation

and thus the last inner for loop has the complexity O(k). Therefore, total complexity for

the oFAST algorithm is O(S(mn + d ∗ log(d) + k)) for an image with dimensions of m

pixels by n pixels, d detected corners, a threshold of k keypoints, and S scales.

Analysis of the rBRIEF algorithm is a bit simpler. Algorithm 2 shows that there is a

single for loop that executes a series of constant-time steps. Therefore, the complexity of

rBRIEF is O(k) for k detected keypoints.

Combining the analysis of the oFAST and rBRIEF algorithms shows that the computa-

tional complexity of the ORB algorithm is O(S(mn + d ∗ log(d) + k) + k) for an image

with dimensions of m pixels by n pixels, containing d detected corners, and a threshold of

k keypoints.

It should be noted that there are some simplifications that can be made to this

computational complexity equation. More specifically, the number of keypoints k and

the number of detected corners d is typically much smaller than the total number of pixels.

This is particularly relevant in the tests of Chapter 3 as the images contain approximately

250,000 pixels. Therefore, the d ∗ log(d) and k terms in the computational complexity

equation can be ignored. In addition, the number of scales S is typically a small constant

and can be ignored as well. Therefore, the simplified computational complexity can be

defined as O(mn). This is the computational complexity that is used in the analysis of

Chapter 3.

A.4 Conclusion

This appendix has presented a detailed description of the ORB feature extraction algorithm

and has analyzed the computational complexity of the algorithms. As part of this analysis,

the ORB algorithm was separated into its two algorithmic components, oFAST and rBRIEF,

and these components were analyzed independently of each other. Once the two algorithm

69

components were analyzed, the computational complexity of the entire ORB algorithm was

calculated and simplified using various assumptions regarding the size of the image under

analysis. The resulting simplified computational complexity was found to be O(mn).

70

Vita

Benjamin Walter Martin is a computer engineer specializing in machine learning and data

processing. He received his Bachelor of Science and Master of Science degrees from the

University of Tennessee, Knoxville in 2009 and 2012, respectively. In 2015, he received

his PhD in computer engineering also from the University of Tennessee, Knoxville. During

Benjamin’s time in graduate school at the University of Tennessee, he was also an intern at

Oak Ridge National Laboratory where he received additional training in machine learning

and image processing techniques. Aside from machine learning, Benjamin’s interests also

include software control systems and robotics.

71

	Front Matter
	Title
	Acknowledgements
	Abstract

	Table of Contents
	1 Introduction
	1.1 Crystal Structures
	1.2 Neutron Scattering
	1.3 Reciprocal Space
	1.3.1 Mathematical Definition of Reciprocal Space

	1.4 Defect Detection
	1.5 Previous Work
	1.6 Summary

	2 Proof of Concept: Defect Detection for Small Crystal Structures
	2.1 Introduction
	2.2 Problem Background
	2.3 Image Keypoint Extraction
	2.3.1 Scale Invariant Feature Transform (SIFT)

	2.4 Machine Learning Algorithms
	2.4.1 Support Vector Machines
	2.4.2 Ensemble Learning and Random Forests

	2.5 Dataset Information
	2.6 Defect Detection Methodology
	2.7 Experiments
	2.7.1 Defect Type Classification
	2.7.2 Substitution Location Prediction

	2.8 Machine Learning Algorithm Evaluation
	2.9 Summary

	3 Defect Detection for Close-Packed Crystal Structures
	3.1 Introduction
	3.2 Problem Background
	3.2.1 Close-Packed Crystal Structures
	3.2.2 Defects in Close-Packed Crystal Structures

	3.3 Dataset Information
	3.4 Defect Detection Methodology
	3.5 Data Preprocessing
	3.6 Image Keypoint Extraction
	3.6.1 SURF: Speeded Up Robust Features
	3.6.2 ORB: Oriented FAST and Rotated Brief Features

	3.7 Machine Learning
	3.8 Experiments
	3.9 Prediction Evaluation Criteria
	3.10 Keypoint Extractor Evaluation
	3.11 Summary

	4 Conclusion and Future Work
	4.1 Conclusion
	4.2 Future Work
	4.2.1 Real Data Analysis
	4.2.2 Experimentation with Multiple Defects
	4.2.3 Defect Texture Analysis
	4.2.4 Sensitivity Quantification

	4.3 Summary of Contributions

	Bibliography
	Appendix
	A Complexity Analysis of the ORB Keypoint Extraction Algorithm
	A.1 Introduction
	A.2 ORB Algorithm Summary
	A.2.1 oFAST: Oriented FAST
	A.2.2 rBRIEF: Rotation-Aware BRIEF

	A.3 ORB Complexity Analysis
	A.4 Conclusion

	Vita

