

Evolving the General Text Parser (GTP)
Utility into a Usable Application Via

Interface Design

A Thesis Presented for the
Master of Science Degree

The University of Tennessee, Knoxville

Patrick A. Lynn
December 2002

iii

Acknowledgement

I would like to thank Dr. Michael W. Berry for all the direction
he has given me throughout my thesis project as well as his
take on the computer science profession and life in general. I
would like to thank Dr. Bradley Vander Zanden and Dr. Tom
Dunigan for agreeing to be apart of my thesis committee. I
also wish to thank Prof. Richard Martin who taught me that
there is always a creative solution to the problems life throws
at you. Having taken courses with each of these professors, I
can honestly say they are some of the best teachers I have
had in my academic career. There are plenty of professors in
the world but not all are teachers.

I also want to say thank you to my family for their support
during my pursuit of higher education. My parents never
pressured me about school and yet they managed to instill in
me the need to become a well-educated person. Without them
none of this would be possible. Thanks to my in-laws for their
understanding when I had to attend to my studies and could
not always visit on the weekends. Also, I am grateful to my
wife who put her own graduate plans on hold to allow me the
opportunity to work towards my degree. Lastly, to my
daughter Kaili, you don’t need to ask when will I be done with
school anymore.

v

Abstract

The GTP (General Text Parser) software started out as a single
C++ command line utility for the Solaris computing platform
and has grown into a multiple language, multiple platform
program supporting twenty-nine different options. The GTP
software “provides general purpose parsing of document sets
and matrix decomposition for information retrieval
applications”. Current releases of GTP include a second utility,
GTPQUERY , which has its own set of options and is used in
combination with GTP to allow query processing across the
parsed document sets. The combination of multiple command
line programs, various platform versions, and a complex array
of options began to place a huge burden on GTP’s users
including the GTP software development group. A method was
needed to remove the burden from the user and allow the
multiple pieces of the GTP package to function as a single
entity. This thesis will describe how the addition of a graphical
user interface transformed GTP into a full featured application
and allowed users to use the core GTP utilities in a more
effective way than could be accomplished through the
command line. Also, a visualization concept for viewing query
results is introduced. The concept, through the use of
graphics, attempts to provide the user with a better
understanding of the returned documents while reducing the
user’s need to physically read each document in order to
assess relevance.

vii

Table of Contents

1. Introduction 1

2. Design Criteria 3

3. Concept Design Phase 5

4. Final Design Phase 9

5. Testing and Evaluation 17

6. Future Work 23

 Bibliography 27

 Vita 29

ix

List of Figures

1. Original interface concept 6

2. Single expanded window interface 8

3. Main menu with query interface 11

4. Main menu, button list and document window 13

5. Remote storage interface 14

6. Main menu with demo interface 20

7. Parse interface with reset and main buttons 21

8. Celestial visualization concept 24

9. Library visualization concept 26

1

1. Introduction

The GTP (General Text Parser) software was originally developed as a
single C++ command line utility for the Solaris computing platform.
Today, the GTP package includes a second utility, GTPQUERY, and is
available for many different platforms in multiple programming
languages. GTP has functioned for years as a command line utility
that “provides general purpose parsing of document sets and matrix
decomposition for information retrieval applications”. Through the use
of mathematical modeling, GTP generates vector space models [1, 4]
of text documents and terms contained within said documents that can
then be used for query matching. The multitude of options supported
by the GTP parsing utility greatly affect how the vector space model is
generated as well as the model’s efficiency. However, the quantity of
options and having to specify them through the command line places a
large burden on the program’s user and effectively hides much of the
power the utility is capable of. In addition, GTPQUERY [1], which
added query-processing functionality to GTP, has its own set of
command line options for the user to remember. Given the multiple
elements that now make up the GTP package, a method was needed
that would coalesce the applications, provide the user with a way to
consistently execute GTP across versions and platforms, and make
GTP’s options more accessible to the user. A way to accomplish the
task was to develop a graphical user interface that would represent the
multiple utilities as a single application. This would also allow for
future additions to be included as an additional selection on the main
part of the interface.

2

3

2. Design Criteria

As a part of the initial system design phase, design objectives and
performance requirements were established to ensure that by adding
an interface to GTP all command line short comings and usability
issues would be addressed. The following objectives were identified.

Make the software’s options more accessible to the user.

Due to the command line nature of GTP each option must be
specified at execution time and is in effect hidden from the user.

Reduce the user’s memory workload.

With twenty-nine separate options, a user is not likely to
remember all available options or the proper syntax for using
those options. Ironically, a software utility that aids in indexing
information to make finding information easier requires manually
searching through a help file to make use of the program.

Automate option selection where applicable.

Some of the GTP options require the use of other options or,
alternatively, restrict other options from use. When GTP is used
through the command line a user has the ability to specify
incomplete or invalid option choices.

Provide consistency across platforms and languages.

Multiple versions of GTP can be used on either the same machine
or separate machines possibly with different computing
platforms. The user experience should be similar for any GTP
interaction.

Give GTP more of a commercial appearance.

In addition to adding to the user experience through aesthetics,
a professional appearance can aid the user’s confidence in both
the capabilities of the program and user’s ability to make use of
the software.

These criteria were initially developed for the GTP parser only as
GTPQUERY and other functionalities were yet to be developed. Though
the scope of the design changed as the concept design phase
proceeded, on a whole the main objectives described remained
consistent throughout any added functional requirements.

4

5

3. Concept Design Phase

Having established design objectives the project moved into the
concept design phase. The initial focus for this phase was to organize
the multitude of options into a logical format. Options were
categorized in a progressive hierarchy beginning with similarity of
functions. For example, options used to change default program
values were grouped into a “default settings” category and options
necessary for program execution were grouped into a “required”
category. Next, items were further grouped by whether or not they
required parameters (i.e. –m number requires a number to be given
with the –m option). Finally, options and categories were given an
importance ranking based on how a user might interact with the
groupings.

With the interface’s content organized, hand sketches of possible
layouts were drawn and the most promising elements were combined
in a graphical representation of how the interface might look (see
Figure 1). One principle of interface design is providing users with
different locuses of control [3] based on their experience or needs of a
system. This was an important consideration at this stage of the
design and the initial representation of the interface was constructed
to depict a simple display showing only minimal information needed to
use the GTP parsing software. However, one of the features of the
simple display allowed the interface to be expanded giving access to
all of the more advanced features GTP is capable of.

At the same time, thought was given to creating a professional or
commercial atmosphere for the interface. A graphic that would act as
a header for the interface window seemed the best option. The header
would contain a logo treatment that would provide the GTP package
with an identity. It would also provide a suitable place to display copy
write or version information. As with the interface layout, sketches
were drawn and the more promising concept was chosen for a base of
development.

After the GTP software group reviewed the concept layout and deemed
it a good starting point, a prototype interface was ready to be
constructed in software. The Java programming language was chosen
for the interface construction in order to meet the requirement of
consistency across platforms and versions. The Java language is

6

Figure 1. Original interface concept

7

supported on all the computing platforms that GTP is currently
released for as well as many that GTP has yet to be tested on.
Programming in Java would allow the interface to be created once and
eliminate the need to rewrite for multiple platforms. This would also
allow the interface to hide the underpinnings of GTP and allow new
utilities to be rolled into the interface while maintaining the
appearance of a single application. In order to accommodate the
multiple versions of GTP, the interface would need to include the
functionality of selecting the version of GTP that will be used.

Once the prototype for the single expanding window interface design
was completed, it was presented to the GTP software group for
evaluation (see Figure 2). One of the primary concerns posed during
the evaluation was that, when expanded, the interface window filled
most of the screen height on a monitor displaying with a high
resolution. If used at lower resolution setting the interface would not
fit within the monitors display area. It also became apparent that,
when expanded, the interface was attempting to present too much
information and making it possible to overwhelm the user with the
layout. A design decision was made to use a stationary window that
would utilize tabbed panes to further segment the options as well as
reduce the amount of screen real estate the interface would take up.

8

Fi
g
u
re

 2
.

 S
in

g
le

 e
xp

an
d
ed

 w
in

d
o
w

 i
n
te

rf
ac

e

9

4. Final Design Phase

With the decision made to use a tabbed pane layout, the options’
organizational criteria were revisited. The groupings were reviewed to
re-determine placement of options according to tab selection and the
ordering of the tabs themselves. Once reorganized, software
construction of the new layout began. Features were added to the
software to accomplish some of the established design objectives. To
allow execution of different versions of GTP, a selection box was added
to the main tab of the interface and a model for invoking GTP was
developed. The interface would act a “driver” for the GTP programs
and execute them through an external system call. To accomplish this
the input, output, and error I/O of the invoked process had to be
trapped and dealt with through the interface. Since GTP would be
executed as a separate process with its own error checking routines,
the same error checking functionality had to be built into the interface.
Any requests for user input that GTP might request was determined
prior to the GTP process execution so that the interface could receive
the user input and pass it on to GTP. To reduce some of this cross
process overhead as well as reduce the user’s memory load option
compatibility checking was added to automatically prevent syntax
issues based on the selected options. If the user selects an option that
cannot be used with another option, the second option will
automatically be disabled. If the user selects an option requiring
another option, the second option will automatically be selected at the
same time. For similar reasons general error checking of interface
input and user feedback about possible errors were added as well.

With the interface revamped and most of the functional code complete,
initial testing began to determine the usability of the interface.
Functionally the interface performed well. A text string consisting of
the selected options could be generated and used to invoke the
external GTP parsing program. The interface was also receiving the
process’s output and able to display it back to the user. Visually, the
testing revealed that the interface was fluctuating in size depending on
which interface tab was selected. The sizes of the panes for each tab
were different due to the varying degrees of content assigned to each
tab. An adjustment to the interface was made such that the interface
would determine the largest tab component and force the other
components to use the same amount of space. This stabilized the size
of the interface window and allowed it to remain stationary throughout
the user session.

10

About this time in the design process a second GTP utility, GTPQUERY,
was being completed. GTPQUERY would allow searching of the vector
model space created by the GTP parser. The new query utility had ten
options of its own and would require separating its place in the
interface from that of the parser. The query options were organized
using the same criteria established for the parser (similarity of
function, options requiring parameters, importance of use) and built
into a separate tabbed interface to maintain a consistent feel between
the two sections. A menu structure was developed that would appear
upon interface execution allowing the user to select between the two
functions. The menu would also reappear after the interface had
successfully run the selected utility (see Figure 3).

Having rolled the GTPQUERY interface into the overall interface, a user
now had the to ability to parse a document collection and execute a
query against the parsed information. There was, however, no
method for the user to view the results of a query. This was an
important piece of functionality not present and one that would be
needed in order to provide the user with a complete experience. A
decision was made to add the “view results” functionality into the
interface in a manner that would show the results of the query and
allow the original documents listed in the results to be displayed. Up
to this point the interface had functioned as a “driver” for executing
external programs. The interface was just a method to gather
information and pass it back and forth between the user and the
software. Now the interface would need to be its own utility and this
presented a few problems. The first issue was that the interface had
no knowledge of the parsed documents and depending on the options
used with the GTP parser, a single file may contain several documents.
This excluded any assumptions about treating individual files as
documents and using a directory listing as a document index.
Furthermore, the only files readily available for interaction with the
interface were the file used to specify the query to GTPQUERY and the
result files GTPQUERY generated. The result files returned by
GTPQUERY contain the document id numbers of the relevant
documents along with ranking numbers for each returned document.
This file could easily be read and displayed by the interface but without
knowledge of how the documents were parsed an individual document
could not be read and displayed. When the problem was posed to the
GTP software group it was determined that the GTP parser would be

11

Fi
g
u
re

 3
.

 M
ai

n
 m

en
u
 a

n
d
 q

u
er

y
in

te
rf

ac
e

12

modified to generate an index file that would list an absolute file path
and an offset to the starting position of the document within the file.
The index list would be ordered such that the line number of the index
file related directly to a document’s id number. With the addition of
the index file, the interface now had a method to resolve the document
id numbers from the query result files and display the appropriate
document back to the user. An additional element was added to the
interface’s main menu to allow the selection of viewing the results
generated by GTPQUERY. When this choice is selected, the interface
displays a text input box for the name of the file or directory used to
specify the queries to GTPQUERY. The interface uses the input from
the user to read the number of queries and dynamically creates a
button associated with each individual query. The buttons are then
displayed in a column next to a text window and when one of the
buttons is selected the results associated with the particular query are
displayed in the window. If the user wishes to view a document listed
in the result list, the document id or score can be selected with a
mouse click and a popup window will display the document text (see
Figure 4). If the user selects a query button and no results exist, a
popup dialog window is displayed to alert the user to the fact that no
matches were found for that query. There is also a button on the
query results interface that clears any result list from the text window,
removes all the query buttons, and returns the user to the main
interface menu. With this addition to the interface, a consistent path
of use was established. A user would now be able to use the GTP
package to perform the main actions associated with information
retrieval, parsing, querying, and viewing results.

A new feature that is currently under development will bring remote
storage capabilities [5] to the GTP package. This feature benefits both
the GTP parser and GTPQUERY and was far enough along in
development to set parameters on interface elements required by the
remote storage feature. Since the feature is functionally the same for
both parsing and querying, the same interface tab could be used on
both the respective interface sections (see Figure 5). The remote
storage addition was made to the appropriate sections but until the
feature is ready for release this portion of the interface will be non-
functional.

With all of these additions to the interface design, the interface had
become a full featured application allowing a user to use the core GTP
utilities in a more effective way than could be accomplished through

13

Fi
g
u
re

 4
.

 M
ai

n
 m

en
u
,

q
u
er

y
b
u
tt

o
n
 l
is

t
an

d
 d

o
cu

m
en

t
w

in
d
ow

14

Fi
g
u
re

 5
.

 R
em

o
te

 s
to

ra
g
e

ta
b
 o

f
p
ar

si
n
g
 i
n
te

rf
ac

e

15

the command line. The interface was at this point ready to be tested
in real use situations.

16

17

5. Testing and Evaluation

Hoping to gain feedback on the effectiveness of the design decisions as
well as reveal additional features that might be required to improve
ease of use for the user, the interface was released to members of the
GTP software group for testing. After only a few days of use both
software bugs and new feature needs were identified. Of the software
bugs that were revealed, only the ones considered non-trivial and
having design implications are discussed here.

The first bug reported was an ArrayIndexOutOfBounds exception that
was thrown when a user attempted to view the results of a query.
This error proved to be fatal as the interface would become frozen and
need to be restarted. After replicating the circumstances to generate
the error, the cause of the error was discovered. The “view results”
section of the interface reads the file or directory used to specify
queries for GTPQUERY and upon counting the individual queries
attempts to build buttons for each one. The particular situation
generating the error showed a count of 4736 different queries. The
exception was actually being thrown by the underlying Java Swing
methods rather than a specific part of the interface code. It seems
that Java either imposes a limit to the number components that can be
contained within a display or cannot resolve the problem of having
more display components than screen real estate to place them in. In
either case, the solution was to limit the number of query buttons to
eight. The eight-button limit was chosen because that was the
maximum number of buttons that would fit within the interface
boarders and not cause the interface to need resizing. The problem
with this limit is that now query results can exist but cannot be
accessed through the interface. Currently this limit is considered to be
a design limitation that will just be imposed by the interface. However,
in the future a more elegant solution will be employed and is likely to
function in a manner similar to the “next ten” buttons frequently used
by Internet search engines.

The next bug involved a “processing display” that is supposed to
become visible after the user selects a button to start the execution of
one of the GTP utilities. The problem here was that the display was
not being shown, in most cases, until the particular utility had
completed execution and a status window of the utilities run displayed.
The function of the “processing display” is to signal to the user that
something is happening in response to their button click and without it

18

displaying properly, the interface has the appearance of freezing
especially if the utility takes a while to complete execution. Several
methods were attempted in order to fix the problem but none of them
were successful. It was concluded that the problem likely stems from
the thread safe nature of the Java Swing components and might be
solved by creating a separate thread for the GTP utilities to execute in.
Swing components are accessible by only one thread at a time and in
this case the “processing display” is set to visible in the event handling
thread but the interface repainting does not occur until the main
interface thread regains control. A separate thread was not apart of
the original interface design because the utilities could be executed
with lower overhead and it provided a simple method for the interface
to wait on a utility to finish execution. The addition of separate
threads will require a good deal of reprogramming and is something
that needs to be resolved before the interface is posted for public
release.

The remaining bugs were not as severe as the previous two and
involved issues with window resizing and text formatting. The testing
identified that certain displays used in the interface would disappear if
the user manually resized a window to a smaller size. Each display
component has a minimum, preferred, and maximum size as well as a
method for determining what a component’s size is at a given
moment. If the size parameters are not initially set, Java will set them
at run time and ensure that a display is large enough to show all the
components contained within. The solution was to get the initial size
of the display, determined by Java, and reset the minimum and
preferred sizes to this value. This allowed a display to be manually
resized larger but would not allow the display to be resized smaller
than its original display area.

The last bug issued involved text formatting of the interface displays.
Displays that were used to show text read from files appeared to have
different formatting for different users. The formatting appeared to
have discrepancies between separate computing platforms as well as
between differing versions of Java on the same platform. It was
determined that this would have to be accepted as a side effect of
using the Java language for the interface’s development. Much in the
same way that web pages are designed to accommodate different
HTML (HyperText Markup Language) browsers, steps were taken to
minimize the formatting differences but in general the problem could
pnot be completely eliminated.

19

In addition, the GTP software group also identified features that could
be added to the interface. Primary among these was the addition of a
demo feature to provide the user with an example of how each of the
GTP utilities could be run. To accomplish this demo buttons were
added to the interface’s main menu that corresponded with the
parsing, querying, and viewing results sections. When selected, a
copy of the interface is created with only the section for the
appropriate utility displayed (see Figure 6). All components of the
demo interface are already set to allow the particular utility to be
executed in a predetermined manner and cannot be changed by the
user. The user must still select the button that runs the utility in the
same manner as the regular interface but this way the user is able to
see how the options were set in order to produce the resulting output.

Another important need identified was a method to retain interface
settings throughout a session. The interface was designed so that
once a utility finished execution the interface section of that utility was
reset to the default values. It was pointed out that users might parse
or query over the same set of documents multiple times in a session
and require only minor changes to a previous set of settings. At the
same time it was felt that a user should not have to undo every
individual setting from a previous run if a completely different set of
options were desired. To accommodate this the interface was changed
to retain the settings from the last run of a utility and a “reset” button
was added to the parsing and querying sections of the interface. No
“reset” button was required for the view results section as that portion
of the interface is dynamically constructed each time it is run and
there are no settings to retain. In order to give the user a finer control
over the resetting of interface options, the “reset” button clears only
the tab that is currently displayed. This way if, for example, a user
wants to reparse a set of documents using the original settings of the
defaults tab but retain all other interface settings it can be done with
minimal effort on the user’s part.

The remaining additions to the interface were mainly minor design
changes and did not require a large amount of effort to complete. The
changes included a “help” button being added to the main menu of the
interface to provide the user with access to the GTP man page
information. A “main menu” button was added to each of the separate
utility interfaces to allow access back to the main display no matter
what part of the interface a user was currently in (see Figure 7).

20

Fi
g
u
re

 6
.

 M
ai

n
 m

en
u
 a

n
d
 p

ar
si

n
g
 d

em
o
 i
n
te

rf
ac

e

21

Fi
g
u
re

 7
.

 P
ar

si
n
g
 i
n
te

rf
ac

e
w

it
h
 r

es
et

 a
n
d
 m

ai
n
 m

en
u
 b

u
tt

o
n
s

22

Finally, names were added to the interface window title bars. Even
though the interface uses a graphic header for identification, it was
pointed out that when minimized there was nothing to inform a user
about what the minimized object was.

23

6. Future work

One area that was researched for the “view results” section of the
interface but not implemented was that of information visualization.
Information visualization tries to provide the user with a better
understanding of information through the use of images as opposed to
straight text. Currently this is a major research focus in the
information retrieval discipline and many different concepts are being
pursued. The concepts range from visually simple displays such as
Venn diagrams that aid Boolean query specification [3] to visually
complex displays such as three-dimensional landscapes that represent
document clustering [3]. One of the better concepts researched was
the movieDNA [2] interface which attempts to provide a user with
contextual information of video. The concept uses categories and a
DNA-like display to give the user an idea of the content or
characteristics of a video segment contained within a recording. All of
the researched concepts had both good and bad points but they all
shared the characteristic of having the potential to confuse the user
either through a complex display or an abstract representation of the
information. It also appeared that the concepts worked best for the
given situation they were designed for and were not necessarily
transportable across information applications.

With observations from the visualization research, it was decided that
a new concept for use with the GTP “view results” interface should be
developed. The problem seen with a traditional ranked order list like a
user might receive from an Internet search engine is the user must
read the individual documents to really determine if it meets the query
criteria. Also, the user has no knowledge of any relationships that
may exist between documents in the returned list and therefore has no
way to associate a group of documents as potentially relevant based
on an individual document’s content. The idea of creating document
relationships based on word content seemed like a good avenue for
providing a user with a more intuitive view of the query results. It
should be noted that the intention of this concept is not to completely
replace textual information with graphic representations. After all, the
information being represented visually consists of text documents and
should include text to aid the user in making relevance judgments.

In order to show relationships between the documents a method using
a list of the ten most important words for each document was
developed. This “word list” would allow both the user and the

24

interface to compare key words between documents. The user would
potentially use the list to gain an idea about the content of a document
as well as similarity between documents. The interface would use the
comparison of lists as a basis for graphically displaying document
relationships through a method such as highlighting or proximity of
placement. The algorithm for determining the most important words
was not developed as a part of the concept as it was assumed that a
suitable algorithm using term frequencies or another weighting
scheme could easily be generated.

Having established an idea of how to provide the user with an
increased understanding of query results, a graphic medium to
execute the idea is needed. The first graphic concept developed was
modeled after celestial objects and how gravity ties them together
(see Figure 8). The idea would be represented by three-dimensional
space with the query positioned in the center. The documents and
terms would exist in space around the query and be positioned based
on the results ranking and similarity of “word lists”. As a user moved
through the space titles could be viewed by mousing over document
objects.

Figure 8. Celestial visualization concept

25

If a document object were selected then space would be reordered to
show objects based on their similarity with the selected document as
opposed to similarity with the query. The more the concept evolved,
the more it seemed to suffer the same problems seen in the original
concept research. It was becoming complex, potentially confusing for
a user, and had no real tie to the type of information it was attempting
to represent.

In order to create a simpler solution, a decision was made to
completely rethink the graphical representation from the standpoint of
how text documents are actually used. Before the Internet became
commonplace in society people used to use libraries and enlist the aid
of a librarian to find information on the subjects they were interested
in. The librarian would gather reference materials based on the users
requirements, stack them at a table, and have the user sit at the table
to review the information. A stack of books in a library setting seemed
like a very logical way to graphically represent results of a query. The
concept would operate as follows. The user is shown a room with a
stack of books sitting on a table and a bookshelf in the background.
The ranked scores generated by GTPQUERY would determine the order
of book placement. As the user positions the mouse over a book the
relevant document information, such as the title, and the document’s
“word list” are displayed. At the same time highlights appear around
other books considered to have a relationship with the book currently
being reviewed. If a user selects a book by clicking it then that book
along with all that are related to it slide out from the main stack and
display their “word lists” (see Figure 9). All “word list” words common
across documents are shown in bold typeface to indicate how
similarities were arrived at. The bookcase in the display can be used
to store documents by simply dragging a book from the stack to the
bookcase. By putting a book on the bookcase documents can be
stored between queries and GTP sessions. When new books are added
to the bookcase they will be ordered by their similarity with the books
already on the shelves. This similarity is based on both the
comparison of the document “word lists” and comparison of the
document vectors generated by GTP’s underlying latent semantic
indexing (LSI) model [1, 4]. If a close similarity exists, the new book
will be placed next to its similar counterpart. If it is not so similar, the
book might be spaced away from the other books. If a book is very
different from ones already stored, it will be placed on another shelf.

26

Figure 9. Library visualization concept

The bookcase not only provides a way to store documents deemed
relevant by the user but also attempts to maintain the idea of
relationships with documents from separate query results. This way if
a user executes multiple queries in an attempt to find documents
about the same subject the bookcase can relay visually the documents
that are closely related and the documents that may not be as
relevant to the subject as originally believed.

This “library” concept provides the user with two important functions
through visualization. First, it provides the user with a concise view of
the query results and enough information to allow the user to make
relevance judgments without the need of viewing every single
document. Second, it provides the user with a method to store
relevant results from a query and retrieve at a later time. This goes a
long way to reduce the memory workload on the user as the need to
remember where a document was seen from a prior search is virtually
eliminated. It is felt that with further development, this concept would
not only benefit the GTP interface but also be beneficial to other
information retrieval applications as well.

27

Bibliography

28

[1] J. Giles, M.W. Berry and L. Wo, "GTP (General Text Parser)
Software for Text Mining", Proceedings of the C. Warren Neel
Conference on the New Frontiers of Statistical Data Miing and
Knowledge Discovery, Knoxville, TN, June 22-25, 2002.

[2] D. Ponceleon and A. Dieberger, “Hierarchical Brushing in a

Collection of Video Data”, Proceedings of the 34th Hawaii
International Conference on System Sciences, 2001.

[3] M. A. Hearst, User Interfaces and Visualization, Modern

Information Retrieval, pages 257-323, ACM Press, 1999.

[4] Understanding Search Engines: Mathematical Modeling and Text

Retrieval, M. W. Berry and M. Browne, SIAM Book Series:
Software, Environments, and Tools, SIAM, Philadelphia, PA, 1999.

[5] M. Beck, T. Moore and J. Plank, “An End-to-End Approach to

Globally Scalable Network Storage”, Proceedings of the ACM
SIGCOMM 2002 Conference, Pittsburgh, PA, USA, August 19-23,
2002.

29

Vita

Patrick Alan Lynn was born in Atlanta, GA on March 9, 1969. He lived
in Marietta, GA were he attended elementary, middle, and high school.
After receiving his high school diploma from George Walton High
School in 1987, Patrick attended the Georgia Institute of Technology in
Atlanta, GA. In March of 1992 he received his Bachelor of Science
degree in Industrial Design from Georgia Tech. After working several
years in the private sector he enrolled at the University of Tennessee
to pursue a Master’s degree in Computer Science and is expected to
graduate December 2002.

