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What Is The Problem?

Understanding functional gene relationships requires expert
knowledge.

Gene sequence analysis does not necessarily imply function.

Gene structure analysis is difficult.

Issue of scale.

Biologists know a small subset of genes.
Thousands of genes.

Time & Money.
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Defining Functional Gene Relationships

Direct Relationships.

Known gene relationships (e.g. A-B).
Based on term co-occurrence.1

Indirect Relationships.

Unknown gene relationships (e.g. A-C).
Based on semantic structure.

1Jenssen et al., Nature Genetics, 28:21, 2001.
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Semantic Gene Organizer

Gene information is compiled in human-curated databases.

Medical Literature, Analysis, and Retrieval System Online
(MEDLINE)
EntrezGene (LocusLink)
Medical Subject Heading (MeSH)
Gene Ontology (GO)

Gene documents are formed by taking titles and abstracts
from MEDLINE citations cross-referenced in the Mouse, Rat,
and Human EntrezGene entries for that gene.

Examines literature (phenotype) instead of genotype.

Can be used as a guide for future gene exploration.
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Vector Space Model

Gene documents are parsed into tokens.

Tokens are assigned a weight, wij , of i th token in j th

document.

An m × n term-by-document matrix, A, is created.
A = [wij ]

Genes are m-dimensional vectors.
Tokens are n-dimensional vectors.
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Term-by-Document Matrix

d1 d2 d3 . . . dn

t1 w11 w12 w13 w1n

t2 w21 w22 w23 w2n

t3 w31 w32 w33 w3n

t4 w41 w42 w43 w4n
...

. . .

tm wm1 wm2 wm3 wmn

Typically, a term-document matrix is sparse and unstructured.
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Weighting Schemes

Term weights are the product of a local, global component,
and document normalization factor.

wij = lijgidj

The log-entropy weighting scheme is used where

lij = log2 (1 + fij)

gi = 1 +


∑
j

(pij log2 pij)

log2 n

 , pij =
fij∑
j

fij
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Latent Semantic Indexing (LSI)

LSI performs a truncated singular value decomposition (SVD) on
M into three factor matrices

A = UΣV T

U is the m × r matrix of eigenvectors of AAT

V T is the r × n matrix of eigenvectors of ATA

Σ is the r × r diagonal matrix of the r nonnegative singular
values of A

r is the rank of A
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SVD Properties

A rank-k approximation is generated by truncating the first k
column of each matrix, i.e., Ak = UkΣkV T

k

Ak is the closest of all rank-k approximations, i.e.,
‖A− Ak‖F ≤ ‖A− B‖ for any rank-k matrix B
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SVD Querying

Document-to-Document Similarity

AT
k Ak = (VkΣk) (VkΣk)

T

Term-to-Term Similarity

AkA
T
k = (UkΣk) (UkΣk)

T

Document-to-Term Similarity

Ak = UkΣkV
T
k
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Advantages of LSI

A is sparse, factor matrices are dense. This causes improved
recall for concept-based matching.

Scaled document vectors can be computed once and stored
for quick retrieval.

Components of factor matrices represent concepts.

Decreasing number of dimensions compares documents in a
broader sense and achieves better compression.

Similar word usage patterns get mapped to same geometric
space.

Genes are compared at a concept level rather than a simple
term co-occurrence level resulting in vocabulary independent
comparisons.
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Presentation of Results

Problem:

Biologists are familiar with interpreting trees.

LSI produces ranked lists of related terms/documents.

Solution:

Generate pairwise distance data, i.e., 1− cos θij

Apply distance-based tree-building algorithm

Fitch - O(n4)
NJ - O(n3)
FastME - O(n2)
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Defining Functional Gene Relationships on Test Data
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“Problems” with LSI

Initial term weights are nonnegative; SVD introduces negative
components.

Dimensions of factored space do not have an immediate
interpretation.

Want advantages of factored/reduced dimension space, but
want to interpret dimensions for clustering/labeling trees.

Issue of scale—understand small collections better rather than
huge collections.
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Defining Functional Gene Relationships

Direct Relationships.

Known gene relationships (e.g. A-B).
Based on term co-occurrence.2

Indirect Relationships.

Unknown gene relationships (e.g. A-C).
Based on semantic structure.

Label Relationships (e.g. x & y).

2Jenssen et al., Nature Genetics, 28:21, 2001.
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NMF Problem Definition

Given nonnegative V , find W and H such that

V ≈WH

W ,H ≥ 0

W has size m × k

H has size k × n

W and H are not unique.
i.e., WDD−1H for any invertible nonnegative D
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NMF Interpretation

V ≈WH

Columns of W are k “feature” or “basis” vectors; represent
semantic concepts.

Columns of H are linear combinations of feature vectors to
approximate corresponding column in V .

Choice of k determines accuracy and quality of basis vectors.

Ultimately produces a “parts-based” representation of the
original space.
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Euclidean Distance (Cost Function)

E (W ,H) = ‖V −WH‖2F =
∑
i ,j

(
Vij − (WH)ij

)2

Minimize E (W ,H) subject to W ,H ≥ 0.

E (W ,H) ≥ 0.

E (W ,H) = 0 if and only if V = WH.

‖V −WH‖ convex in W or H separately, not both
simultaneously.

No guarantee to find global minima.
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Initialization Methods

Since NMF is an iterative algorithm, W and H must be initialized.

Random positive entries.

Structured initialization typically speeds convergence.

Run k-means on V .
Choose representative vector from each cluster to form W and
H.

Most methods do not provide static starting point.
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Non-Negative Double SVD

NNDSVD is one way to provide a static starting point.3

Observe Ak =
k∑

j=1
σjujv

T
j , i.e. sum of rank-1 matrices

Foreach j

Compute C = ujv
T
j

Set to 0 all negative elements of C
Compute maximum singular triplet of C , i.e., [û, ŝ, v̂ ]
Set jth column of W to û and jth row of H to σj ŝ v̂

Resulting W and H are influenced by SVD.

3Boutsidis & Gallopoulos, Tech Report, 2005
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NNDSVD Variations

Zero elements remain “locked” during MM update.

NNDSVDz keeps zero elements.

NNDSVDe assigns ε = 10−9 to zero elements.

NNDSVDa assigns average value of A to zero elements.
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Update Rules

Update rules should

decrease the approximation.

maintain nonnegativity constraints.

maintain other constraints imposed by the application
(smoothness/sparsity).
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Multiplicative Method (MM)

Hcj ← Hcj

(
W TV

)
cj

(W TWH)cj + ε

Wic ←Wic

(
VHT

)
ic

(WHHT )ic + ε

ε ensures numerical stability.

Lee and Seung proved MM non-increasing under Euclidean
cost function.

Most implementations update H and W “simultaneously.”
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Other Objective Functions

‖V −WH‖2F + αJ1 (W ) + βJ2 (H)

α and β are parameters to control level of additional constraints.
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Smoothing Update Rules

For example, set J2 (H) = ‖H‖2F to enforce smoothness on H to
try to force uniqueness on W .4

Hcj ← Hcj

(
W TV

)
cj
− βHcj

(W TWH)cj + ε

Wic ←Wic

(
VHT

)
ic
− αWic

(WHHT )ic + ε

4Piper et. al., AMOS, 2004
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Sparsity

Hoyer defined sparsity as

sparseness (~x) =

√
n −

P
|xi |√P

x2
i√

n − 1

Zero if and only if all components have same magnitude.

One if and only if x contains one nonzero component.
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Visual Interpretation

Sparseness constraints are explicitly set and built into update
algorithm.

Can be applied to W , H, or both.

Dominant features are (hopefully) preserved.
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Sparsity Update Rules with MM

Pauca et. al. implemented sparsity within MM as

Hcj ← Hcj

(
W TV

)
cj
− β (c1Hcj + c2Ecj)

(W TWH)cj + ε

c1 = ω2 − ω
‖H̄‖1
2‖H̄‖2

c2 = ‖H̄‖ − ω‖H̄‖2
ω =

√
kn −

(√
kn − 1

)
sparseness(H)
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Benefits of NMF

Automated cluster labeling (& clustering)

Synonym generation (features)

Possible automated ontology creation

Labeling can be applied to any hierarchy
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Comparison of SVD vs. NMF

SVD NMF

Solution Accuracy A B
Uniqueness A C
Convergence A C-

Querying A C+
Interpretability of Parameters A C
Interpretability of Elements D A

Sparseness D- B+
Storage B- A
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Labeling Algorithm

Given a hierarchical tree and a weighted list of terms associated
with each gene, assign labels to each internal node

Mark each gene as labeled.

For each pair of labeled sibling nodes

Add all terms to parent’s list
Keep top t terms
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Calculating Initial Term Weights

Three different methods to calculate initial term weights:

Assign global weight associated with each term to each
document.

Calculate document-to-term similarity (LSI).

For NMF, for each document j :

Determine top feature i (by examining H).
Assign dominant terms from feature vector i to document j ,
scaled by coefficient from H.
(Can be extended/thresholded to assign more features)
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MeSH Labeling

Many studies validate via inspection.

For automated validation, need to generate a “correct” tree
labeling.

Take advantage of expert opinions, i.e., indexers from MeSH.
Create MeSH meta-document for each gene, i.e., list of MeSH
headings.
Label hierarchy using global weights of meta-collection.
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Recall

From traditional IR, recall is ratio of relevant returned
documents to all relevant documents.

Extending this to trees, recall can be found at each node.

Averaging across each tree depth level produces average recall.

Averaging average recalls across all levels produces mean
average recall.
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Feature Vector Replacement

Unfortunately, MeSH vocabulary is too restrictive, so nearly all
runs produced near 0% recall.

Map NMF vocabulary to MeSH terminology.

Foreach document i :

Determine j , the highest coefficient from ith column of H.
Choose top r MeSH headings from corresponding MeSH
meta-document.
Split each MeSH heading into tokens.
Add each token to jth column of W ′, where weight is global
MeSH header weight × coefficient from H.

Result: feature vector comprised solely of MeSH terms (MeSH
feature vector).
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Data Sets

Five collections were available:

50TG, test set of 50 genes

115IFN, set of 115 interferon genes

3 cerebellar datasets, 40 genes of unknown relationship
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Constraints

Each set was run under the given constraints for
k = 2, 4, 6, 8, 10, 15, 20, 25, 30:

no constraints

smoothing W with α = 0.1, 0.01, 0.001

smoothing H with β = 0.1, 0.01, 0.001

sparsifying W with α = 0.1, 0.01, 0.001 and sparseness = 0.1,
0.25, 0.5, 0.75, 0.9

sparsifying H with β = 0.1, 0.01, 0.001 and sparseness = 0.1,
0.25, 0.5, 0.75, 0.9
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50TG Recall
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115IFN Recall
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Math1 Recall
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Mea Recall
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Sey Recall
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Observations

Recall was more a function of initialization and choice of k
than constraint.

Often, the NMF run with the smallest approximation error did
not produce the optimal labeling.

Overall, sparsity did not perform well.

Smoothing W achieved the best MAR in general.

Small parameters choices and larger values of k performed
better.
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Future Work

Lots of NMF algorithms, each with different
strengths/weaknesses.

More complex labeling scheme.

Different weighting schemes.

Investigate hierarchical graphs.

Visualization?

Gold Standard?
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SGO & CGx

This tool as implemented is called the
Semantic Gene Organizer (SGO).

Much of the technology used in SGO are the basis for
Computable Genomix, LLC.
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SGO & CGx Screenshots
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SGO & CGx Screenshots
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