
Additive Manufacturing Defect Detection using

Neural Networks

James Ferguson

Department of Electrical Engineering and Computer Science

University of Tennessee Knoxville

Knoxville, Tennessee 37996

Jfergu35@vols.utk.edu

Abstract—Currently defect detection in additive

manufacturing is predominately done by traditional image

processing, approximation, and statistical methods. Two

important aspects of defect detection are edge detection and

porosity detection. Both problems appear to be good candidates to

apply machine learning. This project describes the

implementation of neural networks as an alternative method for

defect detection. Results from current methods and the neural

networks are compared for both speed and accuracy.

I. INTRODUCTION

The goal of this project is to apply neural networks to

efficiently and more accurately detect flaws within 3D printed

objects compared to currently used methods. Detecting these

flaws are important for both quality control and certification of

3D printed objects. There are two main parts to this project, edge

detection and porosity detection. The edge detection portion is

used to detect geometric accuracy within the printed object.

Examples of porosity and geometric features are highlighted in

the near-IR image in Figure 1. The input data for both problems

are the same, a StereoLithography (STL) slice image for each

layer and the corresponding Near-IR image of the layer that is

captured after it is printed. An example of a STL slice is shown

in Figure 3 with the matching near-IR image is shown in Figure

4. Both images are too large to be able to be fully displayed in

this paper so subsections are shown instead.

II. CAFFE

An important component to this project is the deep learning

framework Caffe [1]. Caffe is developed by the Berkeley Vision

and Learning Center (BVLC) and is open source hosted at

http://github.com/BVLC/caffe. Caffe was chosen to be used for

this project for two main reasons – ease of use and speed. Neural

Networks can be defined using a plain text prototxt format

which allows for quick testing of different network

architectures. An example of a Caffe prototxt file is shown in

Figure 2.

Caffe also handles a highly optimized implementation of the

network for both the CPU and GPU. This project uses the GPU

version along with NVIDIAs CUDA Deep Neural Network

library (cuDNN) which boosts Caffe’s performance. Officially

only the Linux and OS X platforms are supported. For

compatibility with other software the first task of this project

was to port Caffe to Windows. Unofficial documentation for

installing an older version on Windows was located on BVLC’s

GitHub and served as a guide.

Fig. 1. Examples of porosity (yellow) and geometric features such as

edge thickness and object dimensions (blue)

Fig. 2. Simple prototxt file with a input layer, fully connected layer,

and an output layer.

http://github.com/BVLC/caffe

Fig. 3. Section of STL slice.

Fig. 4. Matching Section of near-IR image.

III. EDGE ANALYSIS

Edge analysis is important for two main reasons; geometric

accuracy and for more accurate porosity detection. The overall

goal is to be able to efficiently and more accurately detect the

edges using neural networks compared to current methods. The

edge detection is a four step process that is described below. The

steps can be divided into 2 categories, preprocessing and

detection. For the detection stage two separate methods were

implemented, the current way edges are detected and the neural

network detection.

A. Preprocessing steps

The preprocessing stage contains three steps, extract the

contours, compute the local normal to the contour, and extract

the pixel intensity profiles along the local normal. All three steps

are described below and with results shown in Figure 5.

1) Extract Contours: The first step of the preprocessing

phase is to extract the contours from the STL slice. This step

was primarily handled by the C++ OpenCV library. OpenCV

has a function that returns both a list of points for each contour

as well as a hierarchy of the contours. The hierarchy of contours

is important for determining the direction of inside and outside

of objects with holes. The left most image in Figure 5 shows

the STL slice and the extracted contour.

2) Compute local normal to contours: The second step of

the preprocessing stage is compute the local normal. In order to

compute the normal of a point A, a line is calculated between

two points, B and C, that are three positions on each side of A.

From this line a normal vector can be calculated by equations

(1) and (2). In the equations the x and y coordnates of a point

are represented in the format of Point.Coordate.

normal.x = B.y – C.y (1)

normal.y = C.x – Bx (2)

The next step is to compute and store the angle between the

normal vector and the X axis, this can easily be done by using

the atan2 function with the normal vector The results are

visualize by color coding the angle and are shown as the third

image of Figure 5.

3) Extract Intensity Profile: The final step of the

preprocessing phase is to extract pixel intensity profiles across

the normal vector calculated in the previous step. An intensity

profile is the set of values that are taken along a line segment.

The value of each pixel in the near IR image ranges from 0

(black) to 255 (white). The profile is taken along the normal

that was calculated in the previous step and is centered on

contour point. A fixed length of 15 pixels was chosen as it

sufficiently spanned the entire edge. Finally, the value of each

pixel is then converted to between 0 and 1 and stored for the

detection phase.

B. Downhill Simplex

 The current method of approximating an edge of an object is

to fit a sigmoid curve to the half of the profile then selecting the

index that the sigmoid crosses a determined threshold. The

sigmoid curve used is calculated using two parameters, 𝛼 and 𝛽,

and the hyperbolic tangent function as shown in equation (3).

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = 𝑡𝑎𝑛 ℎ(𝛼 − (𝛽 ∗ 𝑖)) (3)

 The downhill simplex method, also known as the Nelder-

Mead method [2], is the algorithm used to fit the sigmoid to the

profile. The downhill simplex method is commonly used to

search over multiple dimensions of variables with the goal of

minimizing a cost function. For our problem the variables to be

optimized are 𝛼 and 𝛽. The cost function shown in equation (4)

is the sum of distance between the sigmoid and the profile at

each index.

𝑐𝑜𝑠𝑡 = ∑ (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑖) − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒[𝑖])8
𝑖

2
 (4)

 The downhill simplex algorithm works by creating a

simplex, which is a shape with n+1 vertices in n dimensions,

and moving the simplex through the search space until a local

minimum is reached. This problem only has two variables so

the simplex is a triangle. Each vertex of the triangle represents

a sigmoid with 𝛼 and 𝛽 corresponding to the x and y

coordinates of the vertex.

Each vertex is evaluated according to the cost function and the

worst vertex is removed and replaced at a new location. There

are three operations of reflection, contraction, and expansion

that are used to determine where the new vertex is placed. The

details of these operations are discussed in [2] but are beyond

the scope of this project.

 Once the sigmoid converges the index within the profile of

the edge must be found. A threshold value of .15 was chosen by

trial and error. Each index of the sigmoid is surveyed and the

index closest to the threshold is selected as the edge. The

threshold can be adjusted to change the “tightness” of the edge.

A visualization of the profile and sigmoid is shown in Figure 6.

The algorithm must be repeated for the other half of the profile

in order to find both the inside and outside edges.

Fig. 6. Sigmoid (red) fitted by the downhill simplex to the profile (blue). The
threshold is shown in green. Index 5 was chosen as it is the closest index to

the point of intersection between the threshold.

C. Neural Network

 The new method of edge detection using an artificial neural

network was selected for multiple reasons including speed,

performance, and ease of implementation. Neural Networks can

easily be parallelized and are able to leverage GPU’s for speed.

Multiple libraries exist that assist in the creation and

deployment of neural networks. As discussed early the library

used in this project is Caffe. The accuracy of the neural network

is limited by the accuracy of the training data which is generated

by the downhill simplex method.

 The network architecture is a simple feed forward fully

connected network. A feed forward network consists of three

types of layers – an input layer, hidden layers, and an output

layer. Every neuron in each layer is connected to every neuron

in the next layer. Each connection has a weight wj associated

with it. The value of each neuron of each neuron is calculated

equation (5) where the value of the neuron in the previous layer

is xj. The activation function is the tanh function. After each

forward pass the weights are adjusted by gradient descent

backpropagation

𝑛𝑒𝑢𝑟𝑜𝑛𝑖 = ∑ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐(𝑥𝑗𝑤𝑗) (5)

 The architecture chosen is 15 neurons in the input layer, one

hidden layer with 50 neurons, and 15 output neurons. The 15

input neurons map to the 15 profile values. Only one hidden

layer was chosen due to the relatively small number of inputs

and outputs. The 15 output neurons represent the 15 possible

indices within the profile where the edge can occur. The index

of the output neuron with the maximum value is determined to

be the edge.

 By default, Caffe only support inputs that are in an image

format. A small program was written that accepts a csv (comma

separated variable) file as an input and converts the data to a

format compatible with Caffe. Each row in the csv file is a

profile extracted from the preprocessing phase saved along with

the label calculated from the downhill simplex algorithm. Each

value is separated by a comma and the label calculated from the

downhill simplex algorithm as the last value on the line. Next

profiles are randomly separated into training and testing sets.

Since many of the profiles are very similar only 20% are selected

as part of the training set and the other 80% make up the testing

set. After each epoch the testing set is evaluated and the training

Fig. 5. Preprocessing method with visualization of the intermediate steps results. The extracted profile is shown with the beginning of the profile as green, the

middle as yellow and the end as red.

process is stopped after performance has not improved for three

consecutive times. Because the network is small it converges

quickly and terminates after ten epochs, or approximately 15

seconds. Finally, the trained network is saved to be used for

processing all the profiles.

D. Edge Analysis Results

 Both downhill simplex and neural network methods were

tested on a single layer. The layer contained 21,325 extracted

profiles. Both versions were tested on a computer with an Intel

Xeon ES-1650 v3 CPU and a Nvidia Quardo K2200 GPU. The

neural network version was significantly faster than the

downhill simplex method to process all of the profiles. The time

it took to process an entire layer excluding the preprocessing

steps was 21.6 seconds for the downhill simplex method

compared to the 0.7 seconds for the neural network method.

The neural network version had an approximate speed up of 31x

over the current edge detection method. A subsection of the

near-IR with the detected edge overlaid is shown in Figure 7. In

Figure 7 the downhill simplex results are shown on the left and

the neural network results are shown on the right. The downhill

simplex results show both inside and outside edges detected,

the neural network only displays the inside edge. The outside

of the edge can be calculated by reversing the profile and using

the same neural network. The edge produced by the neural

network is much smoother than the downhill simplex version.

One possible reason for this is that the downhill simplex often

gets stuck in local minima while the neural network is able to

generalize and handle profiles that are irregularly shaped.

 Once the edges are detected the further edge analysis was

completed. Figure 8 shows a visualization of the distance from

the detected edge and the contour from the STL slice. This

measurement can be used to analyze geometric accuracy of the

printed object.

Fig. 7. Edge detection results for the downhill simplex and neural network
methods

Fig. 8. Visualization of distance between contour from STL slice and the

neural network detected inner edge.

IV. POROSITY DETECTION

The second portion of this project is porosity detection. The

regular approach for porosity detection is to first find the region

of interest using the STL slice as a mask in order to isolate the

pixels within the object. The next step is to perform statistical

analysis to segment the pores from non-pores.

A. Convolutional Neural Network Method

The new porosity detection method utilizes convolution

neural networks. This approach was inspired by the use of neural

networks in segmenting membranes by Ciresan et al [3]. The

initial step is the same as the regular method, isolate the pixels

of interest by using a mask of the STL slice. Next for each pixel

p within the region of interest the convolutional neural network

classifies p as either pore or non-pore. The input to the network

is the 17x17 window that is centered on p. The output is the

probably that p is a pore. The porosity detection process is

shown in Figure 9.

B. Architecture

A convolutional neural network has multiple types of layers

that extract features within an image then classifies the features.

The three layer types commonly used are convolutional,

pooling, and fully connected layers [4]. The convolutional layers

consist of kernels that move across a 2D input and generate a 2D

activation map. The pooling layers reduce the output from the

convolutional layers. The type of pooling layer used in this

project is max-pooling with kernel sizes of 2x2. The pooling

filters moves across the input and keeps the max value in a 2x2

area and discards the other three values. The final type of layer

used is a fully-connected layer. These layers operate the same

way as layers in normal feed-forward neural networks. The

architecture used is shown in Table I.

Table I. Convolutional Neural Network Architecture

Layer Type Maps and Neurons Kernel Size

0 Input 1 x 17 x 17

1 Convolutional 16 x 17 x 17 4 x 4

2 Max Pool 16 x 9 x 9 2 x 2

3 Convolutional 16 x 6 x 6 4 x 4

4 Max Pool 16 x 3 x 3 2 x 2

5 Convolutional 16 x 2 x 2 2 x 2

6 Fully Connected 100 neurons 1 x 1

7 Output 2 neurons

C. Training

 The results of the regular method are used as groud truth.

Training and testing examples are selected by saving the 17x17

window surrounding eligible pixels as an image with its

corresponding label in the levelDB format Caffe supports by

defualt. The total set of pixels is divided into a training set and

a testing set. The examples are split 75% for training and 25%

for testing. Over 99% of eligible pixels are classified as pores

so the training set needed to be augmented with pore examples.

Each positive example is duplicated then rotated either 90, 180,

or 270 degrees and added to the training set. Additionally, non-

porosity examples are randomly discarded in order to make the

training set have approximately 50% of each type. The training

phase in Caffe is configured to process the testing set after each

epoch and terminate when the testing set has stopped improving

five consecutative times. The training phase takes much longer

than the edge detection because the neural network is much

more complex and there are many more examples in the

training set. The total training process takes approximately 50

minutes until convergence.

D. Results

The neural network porosity detection was tested over an

entire stack of layers. By trial and error a probability threshold

of 95% was selected that determines if a pixel is accepted as a

pore or not. This means only pixels with an output higher than

.95 from the neural network is considered a pore. Overall the

convolutional neural network was able to detect the porosity

comparable to the traditional method but had with several

issues. The neural network detected pixels around the pores as

pores as well and also generated false positives near the edge.

Results from a subsection of a layer are shown in Figure 10, the

near-IR image is shown on the left and the porosity detected is

marked on the right with white.

Fig 10. Near-IR image and results from the porosity detection with a 95%

threshold.

Fig. 9. Porosity detection process using a convolutional neural network for a single pixel. The green square in the second step represents the 17 x 17 window

centered around the selected pixel. The window is the input for the convolutional neural network and the probability of porosity is the output. The neural
network architecture shown is only used as an example and is not the architecture used in this project.

V. FUTURE WORK

 The initial results are promising however there are still

many improvements that could be made. For the edge detection

portion, speed could be improved by processing the profiles

from all the layers at the same time compared to an individual

layer at a time. A planned improvement for the porosity

detection is to use the edge detection to create a more accurate

mask. This should allow for better detection of porosity

especially near the edges. Both portions of the project could

also see considerable accuracy improvements with better

ground truth data.

VI. ACKNOWLEDGEMENTS

 I would like to acknowledge and thank Dr. Michael Berry,

my advisor at the University of Tennessee. I would also like to

acknowledge and thank Dr. Vincent Paquit, my mentor at Oak

Ridge National Laboratory (ORNL). My assistantship at ORNL

was supported by the Graduate Research Assistantship for

Master Students (GRAMS) program through University of

Tennessee’s Center of Intelligent Systems and Machine

Learning (CISML).

REFERENCES

[1] Y Jia, E Shelhamer, J Donahue, S Karayev, J Long, R Girshick, S

Guadarrama, and T Darrell. Caffe: Convolutional architecture for fast
feature embedding. arXiv preprint arXiv:1408.5093, 2014

[2] J. A. Nelder and R. Mead, A simplex method for function minimization,

Computer Journal 7 (1965), 308–313

[3] Dan Claudiu Ciresan, Alessandro Giusti, Luca Maria Gambardella, and

Jurgen Schmidhuber, “Deep neural networks segment neuronal
membranes in electron microscopy images,” in Neural Information

Processing Systems, 2012

[4] D. Scherer, A. Muller, and S. Behnke. Evaluation of pooling operations
in convolutional architectures for object recognition. In International

Conference on Artificial Neural Networks, 2010.

