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Abstract—Currently defect detection in additive 

manufacturing is predominately done by traditional image 

processing, approximation, and statistical methods. Two 

important aspects of defect detection are edge detection and 

porosity detection. Both problems appear to be good candidates to 

apply machine learning. This project describes the 

implementation of neural networks as an alternative method for 

defect detection. Results from current methods and the neural 

networks are compared for both speed and accuracy. 

I. INTRODUCTION  

The goal of this project is to apply neural networks to 

efficiently and more accurately detect flaws within 3D printed 

objects compared to currently used methods. Detecting these 

flaws are important for both quality control and certification of 

3D printed objects. There are two main parts to this project, edge 

detection and porosity detection. The edge detection portion is 

used to detect geometric accuracy within the printed object. 

Examples of porosity and geometric features are highlighted in 

the near-IR image in Figure 1.  The input data for both problems 

are the same, a StereoLithography (STL) slice image for each 

layer and the corresponding Near-IR image of the layer that is 

captured after it is printed. An example of a STL slice is shown 

in Figure 3 with the matching near-IR image is shown in Figure 

4. Both images are too large to be able to be fully displayed in 

this paper so subsections are shown instead. 

 

II. CAFFE 

An important component to this project is the deep learning 

framework Caffe [1]. Caffe is developed by the Berkeley Vision 

and Learning Center (BVLC) and is open source hosted at 

http://github.com/BVLC/caffe. Caffe was chosen to be used for 

this project for two main reasons – ease of use and speed. Neural 

Networks can be defined using a plain text prototxt format 

which allows for quick testing of different network 

architectures. An example of a Caffe prototxt file is shown in 

Figure 2.  

Caffe also handles a highly optimized implementation of the 

network for both the CPU and GPU. This project uses the GPU 

version along with NVIDIAs CUDA Deep Neural Network 

library (cuDNN) which boosts Caffe’s performance. Officially 

only the Linux and OS X platforms are supported. For 

compatibility with other software the first task of this project 

was to port Caffe to Windows. Unofficial documentation for 

installing an older version on Windows was located on BVLC’s 

GitHub and served as a guide.  

 

Fig. 1. Examples of porosity (yellow) and geometric features such as 

edge thickness and object dimensions (blue) 

Fig. 2. Simple prototxt file with a input layer, fully connected layer, 

and an output layer. 

 

http://github.com/BVLC/caffe


Fig. 3. Section of STL slice. 

Fig. 4. Matching Section of near-IR image. 

 

 

III. EDGE ANALYSIS 

Edge analysis is important for two main reasons; geometric 

accuracy and for more accurate porosity detection. The overall 

goal is to be able to efficiently and more accurately detect the 

edges using neural networks compared to current methods. The 

edge detection is a four step process that is described below. The 

steps can be divided into 2 categories, preprocessing and 

detection. For the detection stage two separate methods were 

implemented, the current way edges are detected and the neural 

network detection.    

A. Preprocessing steps  

The preprocessing stage contains three steps, extract the 

contours, compute the local normal to the contour, and extract 

the pixel intensity profiles along the local normal. All three steps 

are described below and with results shown in Figure 5.  

1) Extract Contours:  The first step of the preprocessing 

phase is to extract the contours from the STL slice. This step 

was primarily handled by the C++ OpenCV library.  OpenCV 

has a function that returns both a list of points for each contour 

as well as a hierarchy of the contours. The hierarchy of contours 

is important for determining the direction of inside and outside 

of objects with holes. The left most image in Figure 5 shows 

the STL slice and the extracted contour. 

 

2) Compute local normal to contours: The second step of 

the preprocessing stage is compute the local normal. In order to 

compute the normal of a point A, a line is calculated between 

two points, B and C, that are three positions on each side of A. 

From this line a normal vector can be calculated by equations 

(1) and (2). In the equations the x and y coordnates of a point 

are represented in the format of Point.Coordate. 

 

normal.x = B.y – C.y        (1) 

normal.y = C.x – Bx    (2) 

 

The next step is to compute and store the angle between the 

normal vector and the X axis, this can easily be done by using 

the atan2 function with the normal vector The results are 

visualize by color coding the angle and are shown as the third 

image of Figure 5.  

 

3) Extract Intensity Profile: The final step of the 

preprocessing phase is to extract pixel intensity profiles across 

the normal vector calculated in the previous step. An intensity 

profile is the set of values that are taken along a line segment. 

The value of each pixel in the near IR image ranges from 0 

(black) to 255 (white). The profile is taken along the normal 

that was calculated in the previous step and is centered on 

contour point. A fixed length of 15 pixels was chosen as it 

sufficiently spanned the entire edge. Finally, the value of each 

pixel is then converted to between 0 and 1 and stored for the 

detection phase. 

B. Downhill Simplex 

 The current method of approximating an edge of an object is 

to fit a sigmoid curve to the half of the profile then selecting the 

index that the sigmoid crosses a determined threshold. The 

sigmoid curve used is calculated using two parameters, 𝛼 and 𝛽, 

and the hyperbolic tangent function as shown in equation (3). 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = 𝑡𝑎𝑛 ℎ(𝛼 − (𝛽 ∗ 𝑖))               (3) 

 

      The downhill simplex method, also known as the Nelder-

Mead method [2], is the algorithm used to fit the sigmoid to the 

profile. The downhill simplex method is commonly used to 

search over multiple dimensions of variables with the goal of 

minimizing a cost function. For our problem the variables to be 

optimized are 𝛼 and 𝛽. The cost function shown in equation (4) 

is the sum of distance between the sigmoid and the profile at 

each index. 

 

𝑐𝑜𝑠𝑡 =  ∑ (𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑖) − 𝑝𝑟𝑜𝑓𝑖𝑙𝑒[𝑖])8
𝑖

2
        (4) 



 

      The downhill simplex algorithm works by creating a 

simplex, which is a shape with n+1 vertices in n dimensions, 

and moving the simplex through the search space until a local 

minimum is reached. This problem only has two variables so 

the simplex is a triangle. Each vertex of the triangle represents 

a sigmoid with 𝛼 and 𝛽  corresponding to the x and y 

coordinates of the vertex. 

Each vertex is evaluated according to the cost function and the 

worst vertex is removed and replaced at a new location. There 

are three operations of reflection, contraction, and expansion 

that are used to determine where the new vertex is placed. The 

details of these operations are discussed in [2] but are beyond 

the scope of this project. 

      Once the sigmoid converges the index within the profile of 

the edge must be found. A threshold value of .15 was chosen by 

trial and error. Each index of the sigmoid is surveyed and the 

index closest to the threshold is selected as the edge. The 

threshold can be adjusted to change the “tightness” of the edge. 

A visualization of the profile and sigmoid is shown in Figure 6. 

The algorithm must be repeated for the other half of the profile 

in order to find both the inside and outside edges.  

 
Fig. 6. Sigmoid (red) fitted by the downhill simplex to the profile (blue). The 
threshold is shown in green. Index 5 was chosen as it is the closest index to 

the point of intersection between the threshold. 

C. Neural Network 

      The new method of edge detection using an artificial neural 

network was selected for multiple reasons including speed, 

performance, and ease of implementation. Neural Networks can 

easily be parallelized and are able to leverage GPU’s for speed. 

Multiple libraries exist that assist in the creation and 

deployment of neural networks. As discussed early the library 

used in this project is Caffe. The accuracy of the neural network 

is limited by the accuracy of the training data which is generated 

by the downhill simplex method.  

      The network architecture is a simple feed forward fully 

connected network. A feed forward network consists of three 

types of layers – an input layer, hidden layers, and an output 

layer. Every neuron in each layer is connected to every neuron 

in the next layer. Each connection has a weight wj associated 

with it. The value of each neuron of each neuron is calculated 

equation (5) where the value of the neuron in the previous layer 

is xj. The activation function is the tanh function. After each 

forward pass the weights are adjusted by gradient descent 

backpropagation 

 

𝑛𝑒𝑢𝑟𝑜𝑛𝑖 = ∑ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐(𝑥𝑗𝑤𝑗)              (5)  

 

      The architecture chosen is 15 neurons in the input layer, one 

hidden layer with 50 neurons, and 15 output neurons. The 15 

input neurons map to the 15 profile values. Only one hidden 

layer was chosen due to the relatively small number of inputs 

and outputs. The 15 output neurons represent the 15 possible 

indices within the profile where the edge can occur. The index 

of the output neuron with the maximum value is determined to 

be the edge.  

 By default, Caffe only support inputs that are in an image 

format. A small program was written that accepts a csv (comma 

separated variable) file as an input and converts the data to a 

format compatible with Caffe. Each row in the csv file is a 

profile extracted from the preprocessing phase saved along with 

the label calculated from the downhill simplex algorithm. Each 

value is separated by a comma and the label calculated from the 

downhill simplex algorithm as the last value on the line. Next 

profiles are randomly separated into training and testing sets. 

Since many of the profiles are very similar only 20% are selected 

as part of the training set and the other 80% make up the testing 

set. After each epoch the testing set is evaluated and the training 

Fig. 5. Preprocessing method with visualization of the intermediate steps results. The extracted profile is shown with the beginning of the profile as green, the 

middle as yellow and the end as red. 

 



process is stopped after performance has not improved for three 

consecutive times. Because the network is small it converges 

quickly and terminates after ten epochs, or approximately 15 

seconds. Finally, the trained network is saved to be used for 

processing all the profiles.  

D. Edge Analysis Results 

      Both downhill simplex and neural network methods were 

tested on a single layer. The layer contained 21,325 extracted 

profiles. Both versions were tested on a computer with an Intel 

Xeon ES-1650 v3 CPU and a Nvidia Quardo K2200 GPU. The 

neural network version was significantly faster than the 

downhill simplex method to process all of the profiles. The time 

it took to process an entire layer excluding the preprocessing 

steps was 21.6 seconds for the downhill simplex method 

compared to the 0.7 seconds for the neural network method. 

The neural network version had an approximate speed up of 31x 

over the current edge detection method. A subsection of the 

near-IR with the detected edge overlaid is shown in Figure 7. In 

Figure 7 the downhill simplex results are shown on the left and 

the neural network results are shown on the right. The downhill 

simplex results show both inside and outside edges detected, 

the neural network only displays the inside edge. The outside 

of the edge can be calculated by reversing the profile and using 

the same neural network. The edge produced by the neural 

network is much smoother than the downhill simplex version. 

One possible reason for this is that the downhill simplex often 

gets stuck in local minima while the neural network is able to 

generalize and handle profiles that are irregularly shaped.  

     Once the edges are detected the further edge analysis was 

completed. Figure 8 shows a visualization of the distance from 

the detected edge and the contour from the STL slice. This 

measurement can be used to analyze geometric accuracy of the 

printed object. 

 

    
Fig. 7. Edge detection results for the downhill simplex and neural network 
methods 

 
Fig. 8. Visualization of distance between contour from STL slice and the 

neural network detected inner edge. 
 

IV. POROSITY DETECTION 

The second portion of this project is porosity detection. The 

regular approach for porosity detection is to first find the region 

of interest using the STL slice as a mask in order to isolate the 

pixels within the object. The next step is to perform statistical 

analysis to segment the pores from non-pores. 

A. Convolutional Neural Network Method 

The new porosity detection method utilizes convolution 

neural networks. This approach was inspired by the use of neural 

networks in segmenting membranes by Ciresan et al [3]. The 

initial step is the same as the regular method, isolate the pixels 

of interest by using a mask of the STL slice. Next for each pixel 

p within the region of interest the convolutional neural network 

classifies p as either pore or non-pore. The input to the network 

is the 17x17 window that is centered on p. The output is the 

probably that p is a pore. The porosity detection process is 

shown in Figure 9. 

B. Architecture  

A convolutional neural network has multiple types of layers 

that extract features within an image then classifies the features. 

The three layer types commonly used are convolutional, 

pooling, and fully connected layers [4]. The convolutional layers 

consist of kernels that move across a 2D input and generate a 2D 

activation map. The pooling layers reduce the output from the 

convolutional layers. The type of pooling layer used in this 



project is max-pooling with kernel sizes of 2x2. The pooling 

filters moves across the input and keeps the max value in a 2x2 

area and discards the other three values. The final type of layer 

used is a fully-connected layer. These layers operate the same 

way as layers in normal feed-forward neural networks. The 

architecture used is shown in Table I.  

  

Table I.   Convolutional Neural Network Architecture 

Layer  Type  Maps and Neurons  Kernel Size 

0 Input 1 x 17 x 17  

1 Convolutional 16 x 17 x 17 4 x 4 

2 Max Pool 16 x 9 x 9 2 x 2 

3 Convolutional 16 x 6 x 6 4 x 4 

4 Max Pool 16 x 3 x 3 2 x 2 

5 Convolutional 16 x 2 x 2 2 x 2 

6 Fully Connected 100 neurons 1 x 1 

7 Output 2 neurons  

 

C. Training  

      The results of the regular method are used as groud truth. 

Training and testing examples are selected by saving the 17x17 

window surrounding eligible pixels as an image with its 

corresponding label in the levelDB format Caffe supports by 

defualt. The total set of pixels is divided into a training set and 

a testing set. The examples are split 75% for training and 25% 

for testing. Over 99% of eligible pixels are classified as pores 

so the training set needed to be augmented with pore examples. 

Each  positive example is duplicated then rotated either 90, 180, 

or 270 degrees and added to the training set. Additionally, non-

porosity examples are randomly discarded in order to make the 

training set have approximately 50% of each type. The training 

phase in Caffe is configured to process the testing set after each 

epoch and terminate when the testing set has stopped improving 

five consecutative times. The training phase takes much longer 

than the edge detection because the neural network is much 

more complex and there are many more examples in the 

training set. The total training process takes approximately 50 

minutes until convergence.       

D. Results 

The neural network porosity detection was tested over an 

entire stack of layers. By trial and error a probability threshold 

of 95% was selected that determines if a pixel is accepted as a 

pore or not. This means only pixels with an output higher than 

.95 from the neural network is considered a pore. Overall the 

convolutional neural network was able to detect the porosity 

comparable to the traditional method but had with several 

issues. The neural network detected pixels around the pores as 

pores as well and also generated false positives near the edge. 

Results from a subsection of a layer are shown in Figure 10, the 

near-IR image is shown on the left and the porosity detected is 

marked on the right with white.  

 

 

 
Fig 10. Near-IR image and results from the porosity detection with a 95% 

threshold.  

 

 

 

Fig. 9. Porosity detection process using a convolutional neural network for a single pixel. The green square in the second step represents the 17 x 17 window 

centered around the selected pixel. The window is the input for the convolutional neural network and the probability of porosity is the output. The neural 
network architecture shown is only used as an example and is not the architecture used in this project. 

 



V. FUTURE WORK 

      The initial results are promising however there are still 

many improvements that could be made. For the edge detection 

portion, speed could be improved by processing the profiles 

from all the layers at the same time compared to an individual 

layer at a time. A planned improvement for the porosity 

detection is to use the edge detection to create a more accurate 

mask. This should allow for better detection of porosity 

especially near the edges. Both portions of the project could 

also see considerable accuracy improvements with better 

ground truth data.  
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