
John Clayton England, III
A Robust User Interface to the Stanford Microarray Database (SDM)

M.S. Pilot Adviser: M. W. Berry
April 10, 2003

This project is an add-on to the Stanford Microarrary Database (SMD) to allow easier

file transfers from a user location to the database. The data stored in the database consists of scanned

images of slides containing genomic data. This genomic data is collected from living organisms

treated with color coded dyes and separated and placed on a slide. This slide is scanned and an image

is created with the spots on the graphic varying from green to red. These images are overlaid

showing which spots show similar traits with a yellow color. This combined image is uploaded to the

database. With the standard SMD install this is done through a UNIX account interface. The goal of

this project is to add a web based upload system and remove the need to have a UNIX account for

each user.

The SMD is a collection of perl scripts which are run using CGI (Common Gateway

Interface) on a web server. The scripts provide a web-based interface to the SMD so that users can,

from a web browser, analyze, catalog, and compare experiments. The install of the software is

rudimentary as compared to modern UNIX software installs. Writing scripts to aid in the

installation was helpful in speeding up the install, since many steps had to performed by hand

previously. The install of the SMD did not function correctly upon installation due to differences in

the software deployment at Web Services. Namely, the Oracle database the system required was of a

different version than the one SMD was known to work with at the time. After changing the Oracle

install it was possible to connect the database from the SMD interface. Other problems encountered

were errors in the SMD code; most of these were corrected by finding solutions on the web, others

were worked out by Colton Smith, who works at Web Services.

1

Once the install was complete and in operation, it was possible to determine how users

were able to get data in to the database. The users would scan their genome chips or order premade

chips and scan those chips. Next the users would analyze the chip scans with a software tool, usually

with ScanAlyze (http://rana.lbl.gov), the images obtained from the scanned chips are analyzed with

these tools to mark errors on the chips, and set a grid that matches the spots on the scanned image.

Then the users would copy their files onto a disk and give the disk to the administrators at Web

Services. The administrators would then place the scanned images and the grid files in the proper

locations in the file system. The data can then be loaded into the database. After the data has been

loaded, the users can use the SMD web interface to analyze their data.

This is not how Stanford suggests data insertion should be done. At Stanford the

machine that holds the filesystem where the data is loaded also contains the database. Users are given

a UNIX account on this machine and must transfer their files to the UNIX account. This requires the

user to understand, and be proficient with, UNIX file transfers. While this is not unreasonable, it

seems one could have a much wider audience if file transfers were done through a web interface like

all other functions in the SMD. At the University of Tennessee we have two machines to provide

these functions. One machine holds the filesystem where the data is uploaded and the other holds the

Oracle database. This setup requires each user to have an account for the SMD which includes an

Oracle account and an account on the machine holding the data filesystem. The extra UNIX accounts

can cause overhead for the administrators along with adding security concerns on the machine

running the SMD web-server.

2

The goal was to remove the need for an extra UNIX account and make a much easier

user interface for file transfers. After observing how the Oracle database interacted with the SMD

database client it was clear that the Oracle database did not depend on having local UNIX users. As

long as the data files are in the proper place it does not matter whether the files are owned by the user

who uploaded the files or another user. This is because the scripts that gather the data for inclusion in

the database being as root, so the local owner does not matter. The UNIX username is not used to

obtain the username for the Oracle database, so it is clear the UNIX account is only there to provide

an interface to the filesystem. It was clear that the UNIX accounts could be removed if files could be

placed on the filesystem in the proper place by another means. A web interface would require

additional software to be installed on the web server to ease the file transfers. PHP was chosen as the

scripting language to facilitate these file transfers.

PHP is a scripting language that runs on the web server, allowing scripts to be written

inside of the web page while not allowing the scripts to be seen on the client web browser. The

scripts that make up the file manager for the SMD consists of a login page, file upload page, file

delete page, rename file page, and a file listing page. The login page (see Figure 1.) contains a

username and password form that allow a user to access the other functions of the file manager. To

use the login page you need to have a username and password; this will be assigned by the SMD

administrators. A script has been written that will make a password file for the SMD filemanager

login. The script takes a username and password as input, and as output it produces a password file

containing a username and an MD5 password hash. The hash is used so that the password will not be

stored in clear text on the filesystem. The password is sent in clear text once then the user logs in,

then it is converted to a MD5 hash and checked against the stored hash. This could be overcome if

the web server was recompiled with SSL support, adding encryption to all access of the SMD web

pages. When the login is complete the username is carried through all other loaded pages to keep

track of the user.

3

After login, the user is taken to the main menu page (see Figure 2). This page consists

of the choices available to make use of the file manager. The upload option (see Figure 3) takes the

user to a page where local files on the user's machine can be selected and uploaded to the filesystem.

After a file is selected and the upload button has been selected the script checks the filesystem for the

proper directory structure. If the directory structure exists the file is uploaded. If the directory

structure does not exist it is created as the script runs and then the file is uploaded. This allows the

filesystem to be completely cleared, and the file manager will still function since the directories wil

be recreated when the next upload is attempted. The file is uploaded to a temporary directory and the

file name is checked to see if it already exists on the filesystem; if it does exist, an error is returned.

The user can either do nothing since the file is already uploaded, or can then delete or rename the file

on the filesystem and upload the file again. After the file has been checked for existence, the

temporary file is checked to make sure it was uploaded from the web interface and not placed there

by other means by way of a built in PHP function. Then the file is moved to its final place.

4

Figure 1 Login Page

Figure 2 Main Menu

Once a file has been uploaded, the user may choose to list the files they have uploaded.

This listing shows the file name, size of the file, and the date of the last change to the file. This date

will reflect the day the file was uploaded or the date the file was moved. From the file list page you

can only logout or return to the main menu. By returning the main menu you can choose any of the

functions listed above. Deleting a file (see Figure 4) is done through a simple interface: a drop down

menu will allow the user to pick only files that exist on the filesystem. Once the file is selected, the

delete button can be clicked to remove the file. After the button is pressed the file name is checked

just to make sure the file does exist then it is removed. A page is then displayed showing a message

about the completion of the deletion or an error if the file does not exist. This page will also allow

the user to logout or return to main menu. The rename page is very similar with a drop down list to

select the file to rename and an input box to choose a new name. When the rename button is pressed,

the existence of the file name in the drop down is checked and the non-existence of the filename in

the input box is checked. If both tests pass the file is renamed. There is one other check in place for

renaming: renaming is the only time a user is allowed to type in a filename to change the remote

filesystem.

5

Figure 3Upload Page

Allowing a user to write a file name could cause an issue with what is typed in the

input box (see Figure 5). A user could try to write a file to another part of the filesystem by using

input like ../../../filename, wanting to go up three directories and write a file to a place they were not

meant to use. This would probably fail since the PHP scripts run as a certain user (not root) who

would most likely not have permission to write to that directory. A user could try to write to another

user's space by giving a file name like the following: ../username/file. This would succeed since the

PHP script has the ability to write to any user's area by the design of the file manager. This is taken

care of by using the basename function which will strip off everything before the last slash, leaving

just the file name. If this were tried, the file would be written with the filename given at the end of

the line but it would be written to the logged-in user's area. These rudimentary checks should keep a

user's files safe on the filesystem.

6

Figure 4 Delete Page

Figure 5 Rename Page

This file manager should allow a user to use only a web browser to upload files, and

use the SMD for analysis of those files while taking the need for a UNIX account away from the

SMD system. Other upgrades that could be made to the system are multiple uploads, meaning more

than one file at a time for upload. If it is found that users need to upload many files at one time, this

should be considered. Also enabling SSL on the web server would add some security to the system

as a whole. Lastly, it might be possible to integrate the login of the file manager with the SMD login

to give a single sign-on to the system.

7

References:

G. Sherlock, T. Hernandex-Boussand, A. Kasarskis, G. Binkley, etal.
The Stanford Microarray Database, Nucleic Acids Research 29:1:162-155, 2001

S. H. Friend and R. B. Stoughton.
The Magic of Microarrays, Scientific American, February 2002, pp44-49

Web References:

The Stanford Microarray Database:
http://genome-www5.stanford.edu/MicroArray/SMD/

The UTK install of SMD
http://genome.ws.utk.edu/

ScanAlyze
http://rana.lbl.gov

PHP
http://www.php.net

Perl
http://www.perl.com

Software from the project
http://www.cs.utk.edu/~england/SMDFM/

8

