
 
SPARSE TENSORS DECOMPOSITION SOFTWARE 

 
 

 
 

 
Papa S Diaw, Master’s Candidate 

 
Dr. Michael W. Berry, Major Professor 

 
 

Department of Electrical Engineering and Computer Science 
 University of Tennessee, Knoxville 

  
 

 
July 16th, 2010 

 
 
 
 
 
 

Abstract 
 
 

The purpose of this project was to build a software package that could be used as an alternative 
to the MATLAB Tensor Toolbox for high-order sparse tensor parallel factor analysis. The 
software package will also be used as a tool to incorporate nonnegative tensor factorization into a 
text visualization environment called FutureLens. The project was written in Python, an 
interpreted, object-oriented language. To test the software and evaluate its performance, the 
IEEE VAST 2007 contest dataset was used along with the Python profiler.  
 
 

 
 
 
 

 



1 Background and Introduction 
 
Modern Internet traffic, telecommunication records, social networks (such as Facebook, 
MySpace) and Internet Relays Chats produce vast amounts of data with multiple aspects and 
high dimensionality [3]. Methods to analyze such data are required in areas such as image 
analysis or text mining. Until recently, Nonnegative Matrix Factorization (NMF) has been a 
predominant classification technique in the field of text mining. NMF has performed well 
when dealing with high-dimensional data. NMF models and techniques are capable of 
providing new insights and relevant information on the hidden relationships in large datasets. 
However, NMF techniques preprocess multi-way data and arrange them into a matrix. This 
preprocessing phase requires large computation memory and higher CPU efficiency to 
accomplish the computations. Moreover, NMF relies on linear relationships in the matrix 
representation of the data. This representation sometimes fails to capture important structure 
information. Finally, the two-dimensional matrix calculations can be slower and less 
accurate. To overcome these issues, scientists are turning to Nonnegative Tensor 
Factorizations (NTF). The interest in tensors arises from their capability to provide a natural 
way of dealing with high dimensionality and conserve the original multi-way structure of the 
data. Tensors (and nonnegative tensor factorizations) are used in a variety of disciplines in 
the sciences and engineering. Tensor-based techniques “have a wide range of important 
applications in fields such as in bioinformatics, neuroscience, image processing, text mining, 
chemo-metrics, computer vision and graphics, as well as any other field where tensor 
factorizations and decompositions can be used to perform factor retrieval, dimensionality 
reduction, to mention but a few” [3]. 
 
Sandia National Laboratories has developed a Tensor Toolbox for MATLAB, which handles 
NTF. For more information about the MATLAB tensor toolbox see [1]. Unfortunately, 
MATLAB licenses are expensive and the Tensor Toolbox for MATLAB may not be getting a 
lot of exposure outside of academia. Another drawback to using MATLAB is the fact that it 
is proprietary software. In other words, the users are restricted from modifying or distributing 
the code. 
 
The goal of this PILOT is to develop a Python software package for nonnegative sparse 
tensor factorizations based on the MATLAB implementation of the PARAFAC algorithm. 
The software will provide an alternative to the Tensor Toolbox for MATLAB and will be 
freely available to anyone. In addition, it will facilitate the incorporation of NTF into 
FutureLens, which is an interface to explore and visualize features in collections of text 
documents [17]. Moreover, making the software freely available will give more exposure to 
NTF and spark more interest in the open source community. 
 
The remainder of this report is arranged as follows: Section 2 gives a general overview of 
tensors, Section 3 gives a brief overview of nonnegative tensor factorization and PARAFAC, 
and Section 4 describes the software implementation. Section 5 discusses the performance 
analysis of the software. Section 6 discusses issues encountered with floating-point arithmetic 
and convergence. Finally, concluding remarks and a description of future work are given in 
Section 7. 



2 Tensors 
 
A tensor is a multi-way array or multi-dimensional matrix. The number of dimensions of a 
tensor defines its order also known as mode or ways. For example, a third-order tensor has 
three modes (or indices or dimensions). Scalars, vectors and matrices are special cases of 
tensors: a scalar is a zero-order tensor, a vector is a first-order tensor, and a matrix is a 
second-order tensor. When a tensor has three or more dimensions, it is called a high-order 
tensor. For a complete review of tensors, see Kolda and Bader [2]. 

 
In this PILOT, we focus our attention on non-negative sparse tensors. Our interest in the non-
negativity of the data is due to the fact that many real-world data are nonnegative and the 
hidden components have a physical meaning only when nonnegative [3]. For instance, in 
image processing pixels are represented by nonnegative numbers or in information retrieval, 
documents are usually represented as relative frequencies of words in a dictionary. In 
addition, the sparseness allows for features selection and generalizations. For instance in 
economics, the “sparseness constraints may increase the efficiency of a portfolio” [3].  
 
We introduce several definitions important to NTF.  

 
DEFINITION 2.1. An N-way tensor A is rank-one if it can be written as the outer product of N 
vectors i.e., 

 

  

! 

A = a1 o a2 o a3 o ...aN  

The symbol “  

! 

o” represents the vector outer product. Fig 2.1 gives an example of a rank-one 
third order tensor [3]. 

 
      DEFINITION 2.2. The outer product of the tensors 

! 

Y " IRI1#I 2#...I N and

! 

X " IRJ1#J2#....#J M is   given 

by 

  

! 

Z =Y o X " IR I1#I 2#...#I N #J1#J2#...#J M , 
      where 

! 

zi1 ,i2 ,...,iN , j1 , j2 ,..., j M = yi1 ,i2 ,...,iN " x j1 , j2 ,..., j M
[3]. 

  
 
DEFINITION 2.3.  The rank of a tensor A is defined as the smallest number of rank-one 
tensors that generates A as their sum [2].  

 



The definition of the rank of a tensor is similar in some respects to the definition of the rank 
of a matrix. But one difference when it comes to tensors is that, one can have a rank over the 
rows that is different from the rank over the columns. [2] gives a very detailed explanation of 
the differences between tensor rank and matrix rank. 
 
DEFINITION 2.4. The Kronecker product of two matrices

! 

A" IRI #J  and 

! 

B" IRK#L  is given by,  

  

! 

A" B =

a11B a12B K a1JB
a21B a22B K a2JB

M M O M

aI1B aI 2B K aIJB

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

[3]. 

 
 

DEFINITION 2.5. For two matrices 

! 

A = a1,a2,...,aJ[ ]" IRI #J  and 

! 

B = b1,b2,...bJ[ ]" IRT#J  with 
the same number of columns J, their Khatri-Rao product, denoted by ⊙, performs the 
following operation: 

 
A⊙B=[a1⊗b1 a2⊗b2 ··· aJ⊗bJ] 

 
     

! 

" represents the Kronecker product [3]. 
 

 DEFINITION 2.6.   A tensor fiber is a one-dimensional fragment of a tensor, obtained by 
fixing all indices except for one [2]. 
 
DEFINITION 2.7. Unfolding, also known as matricization or flattening, is a process of 
reordering the elements of an N-th order tensor into a matrix. There are various ways to order 
the fibers of tensors, which makes the unfolding process not unique [3]. 

 
 

3 Tensor Factorizations and PARAFAC 
 

In this section we begin with a brief introduction to tensor factorizations, which is key to our 
project. Then, we discuss PARAFAC, which is the algorithm used (in this project) to 
implement the tensor factorizations. 
 
3.1 Tensor Factorizations 
 
Tensor factorizations were first introduced by Hitchcock in 1927 and later developed by 
Cattell in 1944 and Tucker in 1966. The idea behind tensor factorization is to rewrite a given 
tensor as a finite sum of lower-rank tensors.  
 
The two most popular tensor factorizations models are the Tucker model and the PARAFAC 
model. In this project, we implemented the PARAFAC to emulate the Tensor Toolbox for 
MATLAB. The next subsection discusses the PARAFAC. For a review of tensor 
factorizations, see Kolda and Bader [2]. 



 
3.2 PARAFAC 

 
A decomposition of a tensor as a sum of rank-one tensors is called PARAFAC (Parallel 
factor analysis.) PARAFAC is also known as Canonical Decomposition (CANDE-COMPE) 
(Harsman (1970), Carroll and Chang (1970)) [2]. 
  
DEFINITION 3.1. Given a three-way tensor X and an approximation rank R, we define the 
factor matrices as the combination of the vectors from the rank-one components.  
 

  

! 

X " A o B oC " ar obr o cr
r=1

R

#  [2]. 

 
Fig 3.1 gives an example of a three-way tensor factorizations based on PARAFAC.  

 
In this project we used an Alternating Least Square (ALS) algorithm to implement 
PARAFAC. The key idea is to minimize the sum of squares between the original tensor and 
the factorized model of the tensor. As suggested in [7], we cycle “over all the factor matrices 
and performs a least-square update for one factor matrix while holding all the others 
constant” [7]. 
 
Nonnegative tensor factorization (NTF) is a generalization of nonnegative matrix 
factorization. NTF can be considered an extension of the PARAFAC model with the 
constraint of nonnegativity. 

 
4 Software Implementation 
 
The following section describes the implementation of the software package. First we present 
the programming language used in this project. Second we briefly describe the main data 
structures. Finally we discuss the main components of the software. 
 
 
 
 
 



4.1  Python  
 

Python is the programming language used for this project. Python is an object-oriented, 
extensible, interpreted language. It runs on essentially all Unix and Linux systems, as well as 
on DOS/Windows platforms and on the Mac. It is free and comes with complete source code. 
The choice on using Python is justified by several reasons. First its learning curve is very flat. 
Anyone with some programming experience can learn how to use python in a few hours. In 
addition, it supports object methods  (everything is an object in Python) and scales nicely. 
Additionally, there has been a lot of recent interest in Python in the scientific community. 
Several scientific computing packages such as Numpy [8] and Scipy [9] have been created in 
order to extend the languages capabilities for scientific programming. Finally, Python is 
extensible. One can write an object library in C, C++, or native Python, which can then both 
be dynamically or statically linked with the main Python system and used in Python 
programs. 
 

4.2   Data Structures 
 
Mainly two types of data structure were used to implement the software: dictionaries and 
Numpy arrays. 
  
4.2.1 Python Dictionaries 
 
Python dictionaries are mainly used to store the tensor data.  A dictionary in Python is a 
mutable type of container that can store any number of Python objects, including other 
container types. Dictionaries consist of pairs of keys and their corresponding values. The 
structure of the Python dictionaries allows us to exploit the sparseness of our tensors by 
storing them in a more efficient way. They help the performance (both time and memory). 
For instance, in the tests we conducted, the tensor obtained from the VAST data set had 
1,385,205,184 elements, with 1,184,139 nonzero elements. Our software only stores the 
nonzero elements and keeps track of the zeros by using the default value of the dictionary 
(another feature of Python dictionary).  

 
4.2.2 Numpy arrays 
 
“Numpy is the fundamental package for scientific computing in Python. It is a Python library 
that provides a multidimensional array object, various derived objects (such as masked arrays 
and matrices), and an assortment of routines for fast operations on arrays” [10] 
Numpy arrays were used to perform operations such as the Khatri-Rao products or tensors 
multiplications (tensors times vectors and matrices times Khatri-Rao product). Typically, 
such operations are executed more efficiently and with less code than is possible using 
Python’s built-in sequences. In addition, we opted  (after profiling and optimization) to store 
the indices of the tensor in Numpy arrays, which were stored in the dictionary. The choice of 
Numpy arrays was mainly for speed, since they are already optimized for speed. 
 



4.3    Main Modules 
 
In this subsection, we present a brief description of the main modules used (by module, we 
mean a file containing Python definitions and statements) for our software package. These 
modules are the core components of our ALS algorithm.  

 
4.3.1 SPTENSOR 
 
SPTENSOR is the most important module of our software package. It is defined as a class and 
allows us to set up the sparse tensors. It takes as arguments the subscripts of the nonzero 
elements and their values. The subscripts and values could be passed as Numpy arrays, 
Numpy matrices or Python lists. SPTENSOR transforms the arguments into a dictionary and 
keeps a few instances variables such as the size, the number of dimensions, and the 
Frobenius norm. 

 
4.3.2 PARAFAC 
 
PARAFAC is the module that coordinates the NTF. It basically implements an Alternating 
Least Square algorithm. It takes as input the tensor to approximate and the approximation 
Rank. After the NTF reaches the desired convergence or the maximum numbers of iterations, 
the factor matrices are turned into a Kruskal Tensor, which is the object returned by the 
PARAFAC module. Fig. 4.1 gives an illustration of a three-way decomposed tensor. For a 
detailed review of the ALS used in the PARAFAC module see, Kolda [10].  

 
  
4.3.3 INNERPROD 
 
INNERPROD efficiently computes the inner product between a SPTENSOR tensor X and 
KTENSOR Y. It is used by PARAFAC to compute the norm residual, which tells us how 
close the approximation is to the real value of the tensor. 



4.3.4 TTV 
 
TTV computes the product of a sparse tensor X with a  (column) vector V. This module is the 
workhorse of our software package. Most of the computation time is spent in this module. It 
is used by the MTTKRP and INNERPROD modules.  
 
4.3.5 MTTKRP 
 
MTTKRP performs two tasks. First it performs the Khatri-Rao product of all factor matrices 
except the one being updated. Then it performs the matrix multiplication of the matricized 
version of the tensor being approximated with the Khatri-Rao product obtained above. 

 
4.3.6 KTENSOR 
 
KTENSOR creates a Kruskal tensor, which is the object returned after the factorization is done 
and the factor matrices are normalized. It is defined as class, which keeps some instance 
variables such as the Norm. The norm of KTENSOR plays a big part in determining the 
residual norm in the PARAFAC module. Fig. 4.2 gives an illustration of a KTENSOR.  

 

 
Fig. 4.3 shows how the modules interact. First an instance of SPTENSOR and a rank 
approximation are used as inputs. PARAFAC takes the two inputs and starts the factorization. 
Then during the factorization, PARAFAC calls MTTKRP, INNERPROD, and TTV. Finally when 
convergence is reached (or maximum number of iterations), a KTENSOR is generated as 
output. 



 
 

Fig. 4.3 Interaction of Modules. 
 
 

5 Performance Analysis 
 
In writing software,  “The golden rule is to first write an easy-to-understand program, then 
verify it, then profile it, and then think about optimization” [13]. While writing our software 
package, we tried to follow this rule very closely. In this section, we first present the tool 
used to profile the software. Second, we discuss the bottlenecks identified by the profiler and 
improvements made.  
 

5.1  Profiler 
 

The profiler used for this software package is called the Python cProfile. It is a very 
important tool for finding bottlenecks in the code. It provides a way of collecting and 
analyzing statistics about how our different modules consume the processor’s resources. 
Tables 1, 2, and 3 show sample outputs of the Python cProfile. For more detailed coverage of 
the Python cProfile, see [14]. 
 



5.2  Bottlenecks and Optimization 
 
In this subsection, we present the bottlenecks and the improvements we added to the 
codebase to improve the performance of the software. All the tests run during the profiling 
part used the IEEE VAST 2007 contest dataset. 
 
Initially, Numpy arrays were not used as the internal data structures for the computations, 
Python lists were. However, the combination of some Numpy functions such as the DOT 
function or element-wise multiplication function caused us to have to convert Numpy arrays 
back to Python lists. The conversion from Numpy arrays to Python lists was done by the 
Numpy built-in function TOLIST. Table 1 (first row), which was obtained using the cProfile, 
shows that the function call was too expensive. In Table 1, we also noticed that the function 
RETURN_UNIQUE (second row), which traversed the indices of the tensor and add the values 
of the duplicated indices, was quite expensive. And Finally, we have the function TTV (Table 
1, row 6), which performs the multiplication of a tensor by a vector, was taking more than 11 
seconds per call and was making many recursive calls. 
 

 
ncalls Tottime percall cumtime Percall function 
2803 3605.732 1.286 3605.732 1.286 tolist 
1400 1780.689 1.272 2439.986 1.743 return_unique 
9635 1538.597 0.160 1538.597 0.160 array 
814018498 651.952 0.000 651.952 0.000 get of 'dict' 
400 101.308 0.072 140.606 0.100 setup_size 
1575/700 81.705 0.052 7827.373 11.182 ttv 
2129 39.287 0.018 39.287 0.018 max 

Table 1: Modules’ Performance when Python li sts are used (values are in seconds).   
 

To fix these problems, we made incremental changes, rerunning the profiler after each one. 
Table 2 summarizes the performance of the software after we replace the Python lists with 
the Numpy arrays. In Table 2, we noticed that the Percall times for RETURN_UNIQUE function 
and TTV both increased. This is characteristic of software optimization. Improving one part of 
the code may result in performance loss in other areas as evidenced in our case by the 
functions RETURN_UNIQUE and TTV. 
After many improvements such as removing the recursion calls in TTV, removing the 
RETURN_UNIQUE and replacing it with SETUP_DIC function and creating MYACCUMARRAY 
function (a poor man’s version of MATLAB’s ACCUMARRAY [16]), the performance of our 
software package is summarized in Table 3. We can see that the TTV has improved from 22 to 
1.5 seconds. The only function we were not able to improve after many attempts was 
MYACCUMARRAY. 

 
 
 
 
 



ncalls tottime percall cumtime Percall function 
1800 15571.118 8.651 16798.194 9.332 return_unique 
12387 2306.950 0.186 2306.950 0.186 array 
1046595156 1191.479 0.000 1191.479 0.000 'get' of 'dict'  
1800 1015.757 0.564 1086.062 0.603 setup_size 
2025/900 358.778 0.177 20589.563 22.877 ttv 
2734 69.638 0.025 69.638 0.025 max 

   Table 2: Modules’  Performance when Numpy arrays are used (values in  seconds).  
 

Table 3:  Modules’  Performance  after Opt imization (values in seconds) . 
 
Numpy, which “is the fundamental package for scientific computing in Python”[10], helped 
us achieved tremendous code acceleration. During the optimization phase, using the Numpy 
tools allowed us to rewrite code that was more maintainable, which will facilitate any future 
upgrade or addition. 

 

6  Floating-Point arithmetic and Convergence 
 
In this section, we identify two issues we would like to bring to the user’s attention. First we 
discuss a floating-point arithmetic issue in Python, and follow with a related convergence 
issue.  
 
6.1  Floating-point arithmetic 
 
In Python and in MATLAB, “Floating-point numbers are represented in computer hardware 
as base 2 (binary) fractions”, which makes it hard to represent any decimal fraction as an 
exact binary fraction [19]. In addition to this issue, MATLAB uses double precision whereas 
Python uses single precision. While comparing, the tensor toolbox For MATLAB to our 
software, we noticed that the results are not exactly the same when doing the PARAFAC.  
This discrepancy is attributed to the difference in precision between MATLAB and Python 
and does not take away anything in the capability of our software. This is just something to 
keep in mind, when one is comparing our software to the Tensor Toolbox For MATLAB. 

ncalls tottime percall cumtime Percall function 
75 134.939 1.799 135.569 1.808 myaccumarray 
75 7.802 0.104 8.148 0.109 setup_dic 
100 5.463 0.055 151.402 1.514 ttv  
409 2.043 0.005 2.043 0.005 array 
1 1.034 1.034 1.034 1.034 get_norm 
962709 0.608 0.000 0.608 0.000 append 
479975 0.347 0.000 0.347 0.000 item 
3 0.170 0.057 150.071 50.024 mttkrp 
25 0.122 0.005 0.122 0.005 sum (Numpy) 
87 0.083 0.001 0.083 0.001 dot 



Figures 6.1 and 6.2 represent outputs of the PARAFAC of the same sparse tensor respectively 
in MATLAB and Python. 

 

 

 
 



6.2  Convergence 
 
During our testing, we also noticed that convergence is particularly an issue when one sets the 
tolerance on the difference in fit to four decimal digits (while using the IEEE VAST 2007 
contest dataset). Figures 6.4 and 6.5 summarize the various tests we have with the maximum 
number of iterations set at 40 and 50 respectively. We see clearly that when the tolerance on 
the difference in fit is greater than 4 decimal digits, the software performs well. The 
PARAFAC of the tensor obtained from the VAST 2007 contest dataset takes less than 10 
minutes. However, when the tolerance is less than 4 decimal digits, the software runs for over 
an hour in some instances. The choice of the tolerance is certainly problem-dependant. But in 
our tests, it was one the most interesting observation. That is why it is being brought to the 
attention of the user/reader.  

 
Fig. 6.3 Results of various runs with a maximum of 40 iterations 

 
 

 
Fig. 6.4 Results of various runs with a maximum of 50 iterations 



7  Conclusion 
 
The goal of this project was to create a tool that would serve mainly two purposes. First, 
offer an alternative to the Tensor Toolbox for MATLAB. Second, provide a way to 
incorporate nonnegative factorization into FutureLens.  At the end of this project, we 
believe that both goals are within reach. However, one needs to understand that NTF is only 
part of a bigger picture. Our software alone cannot lead to meaningful results. However 
when combined with Post -processing tools such as FutureLens and Expertise, it can lead to 
discovering meaningful hidden patterns large data sets. In an area such as Tensor 
decomposition, numerous additions can be made. An implementation of the Tucker model 
would be beneficial to the scientific community. Plus, the incorporation of NTF into 
FutureLens would greatly benefit text mining.  

 
 

8   Acknowledgements 
 

The author of this report would like to acknowledge Mr. Andrey Puretskiy for the 
discussions and helpful feedback at all stages of this project. Also, the Tensor Toolbox for 
MATLAB, by Bader and Kolda [1], contributed greatly to my understanding of tensor 
decomposition and the inner-workings of PARAFAC. 

 
  

9   References 
 

[1] Tamara G. Kolda, Brett W. Bader , “Tensor Toolbox For Matlab”, 
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/. 

[2]  
[3] Tamara G. Kolda, Brett W. Bader , “Tensor Decompostions and Applications”,  SIAM 

Review , June 10, 2008. 
[4] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, Shun-ichi Amari, “Nonnegative 

Matrix and Tensor Factorizations”, John Wiley & Sons, Ltd, 1009. 
[5] http://docs.python.org/library/profile.html, visited on 06/15/2010. 
[6] http://www.mathworks.com/access/helpdesk/help/techdoc, visited on on 03/12/2010.  
[7] http://www.scipy.org/NumPy_for_Matlab_Users, visited on 03/12/2010. 
[8] Brett W. Bader, Andrey A. Puretskiy, Michael W. Berry, “Scenario Discovery Using 

Nonnegative Tensor Factorization”, J. Ruiz-Schulcloper and W.G. Kropatsch (Eds.): 
CIARP 2008, LNCS 5197, pp.791-805, 2008. 

[9] http://docs.scipy.org/doc/numpy/user/, visited on 03/14/2010. 
[10] http://docs.scipy.org/doc/, visited on 03/14/2010. 
[11]  http://docs.scipy.org/doc/numpy/user/whatisnumpy.html, visited on 03/14/2010 



[12] Tamara G. Kolda, “Multilinear operators for higher-order decompositions”, SANDIA 
REPORT, April 2006. 

[13] http://speleotrove.com/decimal/decifaq1.html#inexact, visited 04/10/2010. 
[14] Hans Petter Langtangen, “A Primer on Scientific Programming with Python”, Springer 

Dordrecht Heidelberg London New York, 2009. 
[15] http://docs.python.org/library/profile.html, visited 05/15/2010. 
[16] Hans Petter Langtangen, “Python Scripting for Computational Science”, Springer, 3rd 

edition, 2009. 
[17] http://www.mathworks.com/access/helpdesk/help/techdoc/ref/accumarray.html, visited 

04/10/2010. 
[18] Gregory Shutt, Andrey Puretskiy, Michael W. Berry, “FutureLens”, Department of 

Electrical Engineering and Computer Science, The University Of Tennessee, November 
20, 2008. 

[19] http://docs.python.org/tutorial/floatingpoint.html, visited 03/25/2010. 
 


