
1

 A Cellular Automata Implementation of a Wildfire Spread
Model

Kristen J. Bains
Adviser: Michael Berry

November 6, 2006

 This project's goal was to implement a wildfire spread model with spatial control
using a cellular automaton. A literature search did not find any apparent similar
approaches. Other cellular automata wildfire spread models exist, but my project makes
an attempt at implementing control techniques, specifically, the firebreak. My model
differs in the complexity of simulation as well. Many other models aim for accuracy by
using complicated mathematical models, such as the Rothermel model. Although, my
model uses much simpler calculations, I believe that it behaves realistically.

The project consists of two main components: a graphical user interface (GUI)
and the model simulation. I will discuss these components separately.

GUI

 The GUI for this project was written in Java. Java was chosen for it's extensive
library of GUI controls, Swing. The GUI consists of four main areas. The menu bar is
used to control various aspects of model execution. The control panel, located to the left
of the screen, allows the user to set various parameters without needing to look in the
menu. The image area is located to the right of the screen and is used to display the
maps, firebreaks, fire start locations, and output from the model. The palette is located
on the far right of the window and gives the user a numerical value for the colors used in
the image area.

Menu Bar

File Menu

 The menu bar contains three main items. The
file menu allows the user to load a pre-existing
landscape file, load a previous configuration, save a
configuration, create a new landscape file, and exit the
program. To load a landscape file, the user selects a
landscape file from a file chooser dialog. Currently the
landscape files are located in the image directory.

Figure 1 File Menu

2

There are four pre-existing files in this directory, named landscape_#.bmp. The
program loads this file into the image area of the screen by overriding paintComponent().
This also writes the image filename and dataset filename to whichImage.dat and
whichLandscape.dat respectively.

 The menu item, “File->Load a previous configuration”, may be of limited value to
the user, and was included mainly as a programming aid. This action loads the image and
dataset filenames from whichImage.dat and whichLandscape.dat, draws the
appropriate image to the screen, loads the firebreaks and fire starts from file, and draws
these on the image. “Save configuration” simply writes the data required to load a
configuration to the needed files.

 The create landscape menu item requires the user to set some values in the control
panel area “Set values for new landscape”. All of these fields have a default value, but
the user is encouraged to experiment with the bounding box values especially. These
values are used by the libnoise module, which is a third-party library used to generate
various kinds of noise. A simple explanation of the bounding box values can be found
here, http://libnoise.sourceforge.net/tutorials/tutorial3.html. The user can also select the
number of rows and columns for the new landscape and name the file something relevant.
This filename will be given to both the image file and the data file. When the user selects
this option, the Java code writes an initialization file, landscape/init.dat, and runs
landscape/generateMap. When generateMap runs to completion, a halt string is
written to stdout and control is given back to the GUI where the new landscape file is
loaded. Finally, the “File->Exit” option simply exits the program.

Reset Menu

 The reset menu contains three options. “Reset->Reset All” clears the image from
the screen and clears the firebreaks and fire start locations. “Reset->Reset breaks” does
not clear the landscape image, but clears and resets the fire breaks. Similarly, “Reset-
>Reset starts” clears the fire start locations.

Run Menu

 The run menu allows the user to “Run->Run the model”. This option writes the
firebreaks and fire starts to their respective data files, writes the init file, and calls the
C++ model code. When the code returns the halt string and control is returned to the
GUI, the newly burned cells are read from final.dat and drawn onto the landscape
image.

3

 “Run->Play animation” can be selected after the model has finished running. This
routine reads the iteration.dat file and creates and animation of the fire. Currently
burning cells are drawn in a transparent red color and the burned cells are drawn in a
transparent black. The transparency allows the user to visualize the initial firebreaks and
fire start locations.

 Finally, “Run->Run optimization” requires the user to select an optimization
firebreak and a start location. If the firebreak is not selected the user will be prompted.
Multiple start locations can be selected but only the first location selected will be used.
The user can also set some parameters on the control panel in the “Optimization options”
area. “Percent map size to search” limits the search range and “Orientation” allows the
user to select from amongst several options. Orientation will refer to the direction that
the firebreak will “grow” during the optimization routine. The user is then prompted for
a filename for the output. I suggest using the naming convention *.opt, but any name is
acceptable. These files are stored in the data directory once the optimization routine is
finished. The routine writes the initialization file with some added parameters that are
used by the optimization routines. The C++ code is invoked, and when control returns to
the GUI, the best firebreak will be displayed on the landscape image.

Control Panel

 The control panel allows the user easy access to all of the parameters that can be
set. In this section I will fully describe each option.

Figure 2 Control Panel

4

Select component to add

 This area allows the user to add components to a loaded landscape image.
“Firebreak” lets the user draw a firebreak onto the image, by clicking and dragging the
mouse. The program records the (x, y) coordinates from the mouse and stores the values
for later use. The firebreaks can be any shape. “Location to start fire” allows the user to
select a location to start a fire by clicking on the image. The selected locations are
indicated by a small blue bullseye shape. Multiple fire start locations can be selected and
are saved and written to a text file. “Optimization firebreak” is similar to selecting a fire
start. The user selects a location by clicking on the image and the location is indicated by
a small white bullseye shape. The user can only select one location.

Options
 This area contains a spinner that lets the user select the width of the firebreak.
This width is currently not indicated on the landscape image. The image only displays a
width of one. The minimum value is 1 and the maximum value is 100, although these
values are easily changed in the GUI code. Another option in this area is currently not
enabled. Allowing the computer to randomly assign fire start locations was an idea that I
discussed with Jane Comiskey but have not implemented at this time.

Optimization options

 “Percent map size to search” allows the user to limit the search range of the
optimization routine. Possible values range from 10 to 100%, incrementable by 1%.
This value (Formula 1)is used while looping through firebreak lengths in the optimization
routine.

ToSearchpercentMap numRows ∗
Formula 1

 The “Orientation” option contains four items in a drop down box. “All”, “0”,
“45”, “90” and “135” are numerical values representing degrees. “0” degrees indicates a
north-south orientation. When a firebreak grows, it will increase by 1 cell in the north
direction and 1 cell in the south direction, which means that each growth cycle of the
firebreak increases its length by two. When a “0” firebreak increases in width, it grows
in an easterly direction. “45” degrees indicates a northeast-southwest orientation. It also
grows by two cells each cycle; one cell toward the northeast and one cell toward the
southwest. When “45” degrees increases in width, it grows in a southeasterly direction.
A “90” degree firebreak is oriented east-west, increases length one cell east and one cell
west, and widens in a southerly direction. Finally, “135” degrees indicates a northwest-
southeast orientation. See Figure 3 for further clarification. By selecting “All”, the
optimization routine will loop through these three orientations and return the best
firebreak from the three. Other degrees of orientation can be added by simply adding the
options to the drop down box in the GUI and adding appropriate routines in the C++ code

5

and in paintComponent().

Figure 3 Showing width and length growth for 0, 90, and 45 degree orientations

Select neighborhood size

 This area contains a set of radio buttons, of which the user can select one option.
“3x3” is the default option and causes the model to use the traditional 8-neighborhood.
“5x5” is an interesting option that uses a 24-neighborhood. One method of verifying
membership in a neighborhood is by using the distance formula, Formula 2. By taking
the floor of the result, you can determine which neighborhood a cell lies in. If the floor is
1, it is in the 8-neighborhood. If the floor is 2, it is in the 24-neighborhood.

() ()() 2
1

2
21

2
21 yyxx −+−

Formula 2

Select threshold values

 This area contains two spinners and a checkbox. The checkbox allows the user to
run the simulation using multiple time steps. The default number of time steps is one,
meaning that once a cell begins burning, it will self-extinguish on the next time step. If
the user has checked the “Multiple time steps” box, a cell has the potential to burn for
two time steps. The values “Threshold 1” and “Threshold 2” control this behavior.
“Threshold 1” will be the lower value. If the fuel density of a cell is below this threshold,

6

the cell will not burn at all. This applies to single time step burns as well as multiple time
step burns. “Threshold 2” will be larger than “Threshold 1”. If a cell's fuel density is
greater than “Threshold 2”, the cell will burn for two time steps. For clarification, see
Table 1.

Fuel Density (ƒ), Threshold 1 (t1), Threshold 2

(t2)
Action

ƒ < t1 Will not burn

t1 < ƒ < t2 Will burn 1 time step

ƒ > t1 Can burn 2 time steps

Table 1

Select seed value
 This area contains a text field, “Seed”, and a checkbox, “Stochastic”. The value
entered into the text field will be used to seed a pseudo-random number generator. If
stochastic is selected, when the simulation is running, if a cell can burn (based on the
threshold values described above), a random number will be generated and used to decide
if the cell will burn or not.

Set values for new landscape
 Finally, this area contains values that are needed when creating a new landscape
file. These are explained in detail in the “File Menu” section of this document.

C++ Model Simulation

generateMap
 Located in the landscape directory, generateMap is the executable file used to
create new landscape maps.

libnoise and Perlin noise

7

 generateMap uses a third-party library called libnoise, which can be
downloaded from http://libnoise.sourceforge.net. I chose this library for its ability to
generate Perlin noise. Perlin noise was invented by Ken Perlin to generate textures for
the movie Tron. Perlin noise can create realistic looking, randomly generated landscape
files, which I chose to use for the fuel density maps, instead of obtaining real fuel load
maps. The libnoise module requires the noiseutils files in the landscape directory
and the compiled libraries in the lib directory.

landscape.cc, main.cc, landscape.h

 These files call functions and library routines from noiseutils and libnoise.
The initialization file is read and parsed to set the parameters that are needed to generate
a map. After the map has been created, an image file is saved and the raw data is saved
to the data/landscape_#.dat file. Since Perlin noise generates numbers in the range -1
to 1, these raw numbers are converted to the range 0 to 1. All fuel densities are in this
range. Some outliers in the raw data exist and are treated as special cases. The landscape
data file is written in the following format: the first row contains the number of rows and
the number of columns in the dataset. Subsequent rows of the file contain rows from the
raw data array.

Fire
 The executable for the simulation is fire. There are two main classes defined for
the simulation: CACell and CASpace.

Figure 4 Perlin Noise Generated Image

8

cell.cc, cell.h

 The CACell class is defined and implemented in cell.h and cell.cc. This class
keeps information about each cell (see Table 2). The methods in this class

int burnState; BURNING, BURNED, FIREBREAK

int iterationFireStarts; the iteration number that the fire started

float slope; Not used

float fuelMoisture; Not used

float fuelDensity; The fuel density value of this cell

int Row; The row number of this cell

int Col; The column number of this cell

int timeStepsToBurn; The number of time steps this cell can potentially burn

int timeStepsBurned; The number of time steps this cell actually burned

ToList toList; List of type std::list<Pair>, keeps a list of the cells this cell spread fire to

Table 2 CACell Instance Variables

only perform the action of setting/changing instance variable values or retrieving these
values. It would be extremely easy to add additional functionality to this model by
simply adding new instance variables. For instance, slope and fuelMoisture are currently
unused, but “layers” can be added to the model with variables here and functionality in
the CASpace class.

space.cc, space.h

 While the CACell class keeps information about individual cells, the CASpace class,
contained within space.cc and space.h, keeps information about the cellular automata
itself. In practical terms, this means that CASpace runs the simulation. There are three
main methods used to run the simulation. initializeSpace() creates the space, represented
by a vector of vector of CACell's. It also reads the fuel densities and firebreaks from file.
startFire() reads the start locations from file and adds these locations to a list of currently
burning cells. go() begins the burn cycle.

 The idea behind the burn cycle is to spread the fire. Each cell that is currently
burning is kept on a burn list. I iterate through this list. For each cell on this list, I try to
spread the fire to it's neighbor cells. If the neighbor cell can burn, it gets added to the end
of the burn list. After I've checked all of the cells neighbors, I remove him from the burn

9

list. When the burn list is empty, I have spread the fire to every possible cell and I can
exit. A cell can burn if it's fuel density is greater than Threshold 1. If the stochastic flag
is selected, a random number will be generated and checked against to determine if the
cell will burn. A cell will burn for two time steps if the multiple flag is selected and it's

fuel density is greater than Threshold 2. In this instance, the cell will stay on the burning
list until after time step 2. At the end of the burn cycle, the total number of burned cells
is calculated and the final burned cells are written to a file to be used by the GUI for
displaying the image.

 CASpace also contains some methods to run the optimization routine, but to explain
how the optimization routine works, we need to take a step back and look at main.cc, the
driver for the simulation.

main.cc

 main.cc controls the simulation. It first reads and parses the init.dat file
(again, thanks to Dr. Banks for the parsing routine), sets the global variables and begins
the simulation by calling initializeSpace() and startFire(). If the optimization flag is not
set, it proceeds by calling go(). However if the optimization flag is set, it takes a different
path. main.cc contains a routine called doOpt(), whose first step is to run the simulation
to completion with a firebreak of length=1 and width=1, with origin at the location the
user selected. This can be accomplished by calling the go() routine and retaining the total
number of cells burned. Once this is accomplished, we loop through all of the user
selected orientations. Inside this loop, we loop through the various lengths and widths.
To avoid having to run the simulation to completion each time, we can take advantage of
the fact that by starting with the smallest possible firebreak, and by increasing it

Figure 5 Landscape with burned cells

10

incrementally, we can essentially reverse the fire. We can do this by keeping track of
each cell that a fire spread to. For instance, if cell[42] was able to spread to cell[41] and
cell[43] but to no other cells, cell[42] would keep a list: {41, 43}. We also need to keep
track of which cells are affected by a firebreak. For this implementation, the firebreak
will affect it's immediate neighbors, or those that are at a distance of 1 (see Formula 1).
For each lengthening cycle, we recalculate the affected cells. If one of the newly affected
cells had burned previously, it is no longer burned because the lengthened firebreak has
affected it, so that cell is put on the affected list and the total number of cells burned is
decreased by 1. We also have to check all of the newly affected cells. We do this by
iterating through their toList. If one of the cells on their toList was burning, it is newly
affected, no longer burned, and the total number of cells burned decreases by 1. We
continue in this manner until we have reversed the fire and we store the total number of
burned cells, the length and width of the firebreak, and the orientation. See Figure 6for
an example. We can now determine what the most effective firebreak would be. This
data is written to a text file that is read by the GUI and the best break is displayed on the
image.

Figure 6 Sequence demonstrating fire reversal algorithm

Makefile and Performance

 The Makefile used is fairly simple. It uses some ideas from Dr. Banks to
automatically create pdf documents from the source code. When compiled without any
optimization flags, the code runs fairly slowly. For a 500 x 500 grid, it takes
approximately two minutes for a complete burn, depending, of course, which machine is
running the code and what your connection speed is. When compiled with the -O3 flag
and while running on a Cetus machine, execution time is less than 30 seconds. On

11

Franken, it takes a little longer. The speed of the GUI is also dependent on the machine
and connection. While running on my laptop over a cable modem, the GUI can be
annoyingly slow, not registering all of the mouse locations when selecting a firebreak,
but when running on a lab machine, it runs extremely smoothly.

 All source code has been tested, compiled and run on Linux boxes. Parts of this
code have been converted to run under Cygwin on a Windows machine, so it is possible,
however, due to the many problems I encountered doing this I don't recommend it. The
source code is located in a CVS repository at /research/bains/fire. A README file is
included to help with compilation and running.

Future Work

 There are many things that could be done to improve and embellish this code. I
designed this code in C++ mainly so it would be easily extensible. It is a fairly simple
task to add components to the Java GUI, and as I discussed earlier it is not difficult at all
to add “layers” to the CA. For instance, the next layer I would consider adding would be
fuel moisture. To do this, you would add a instance variable to the CACell, fuelMoisture.
You would add two methods: one to set the variable and one to get the variable. Then
you would need to consider how the fuel moisture would affect how the cell burns and
add the corresponding code to CASpace. Examples of other “layers” that could be added
include wind, slope, fire temperature, and fuel moisture.

 Some issues that I was unable to resolve include seeing the firebreak as you draw
it, showing the actual width of the firebreak on the image, adding other control methods,
adding more orientations, and adding “real” optimization. I think it would also be nice to
load an actual landscape or fuel density file from an ESRI product, burn the fire, and then
be able to view the output in the GIS. This can easily be accomplished with some
sample code furnished by Eric Carr.

• Extend control techniques

o Chemical control

o Helicopter/dumping water

• Extend model parameters

o Wind

o Slope

o Fuel moisture

o Fire temperature

• GA or Linear programming based optimization

12

• Implement model with OpenInventor

• Implement reading ASCII grid files

Output

 The first sample output was run on landscape_003 with a 90 degree orientation
and searching 70% of the map space. Notice that there is a sharp drop off at
approximately length 120 and by length 225 there are no more cells burning.

Output 1

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169

Break length

b

u
rn

ed

 The second sample was run on landscape_004 with an orientation of 45 degrees
and searching 75% of the map space. The number of burned cells decreases linearly until
it levels out at length 207.

13

Output 2

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169

Break length

b

u
rn

ed

Directory Structure

 It may be helpful to have a description of the directory structure of this project.
The main directory is named fire. There are several subdirectories which are important.
All of the image files are located in the image directory. Source code documentation is
located in doc. The data directory contains initialization files for the C++ code and raw
data files. The include directory contains all of the C++ header files and the lib
directory contains library files for libnoise, third-party software that is used to create
new landscapes. The tools directory contains a file to create automatic source code
documentation. Lastly, the landscape directory contains the C++ source code that is
used to create new landscape files. The generateMap executable uses an initialization
file, and it is also located in the landscape directory. Both the landscape directory and
the fire directory have separate makefiles. One other file to note is setup.csh, located
in the fire directory. This file, when sourced, sets environment variables that are needed
for the project to compile and run. The main fire directory also houses all of the java
source and class files and the C++ source code files for the model.

 The files located in the data directory may require some clarification. The GUI
portion of this project is written in Java, but the model backbone is written in C++. There
does not exist a clean method of passing parameters from a Java executable to a C++
executable, therefore I use several data/text files to allow the passing of parameters.
init.dat is an initialization file that contains several parameters that are entered by the

14

user. The main C++ routine contains a function that parses this file and sets global
variables for use by the model. (This parsing routine was borrowed from Dr. David
Banks.) whichImage.dat and whichLandscape.dat are files that are used by the GUI
code to keep track of the landscape data and image filenames. start.dat and
firebreak.dat contain the (x, y) coordinates of the user selected fire starts and
firebreaks respectively. These are used in both the Java and the C++ code. final.dat is
written by the C++ code after the model has finished and contains the (x, y) coordinates
of the burned cells. This is used by the GUI to draw the burned cells on the image.
Similarly, iteration.dat contains an array of time steps which are used by the GUI to
display an animation of the fire. The data directory also houses the landscape data files,
usually named landscape_#.dat, but can be called anything. Each landscape data file
has a matching file in the image directory. The data files contain an array of fuel
densities. Finally, the landscape directory contains *.opt files, which are the output
files from the optimization routine. They list the total number of cells burned, the length
and width, and the orientation for each run of the optimization routine. These files are
written by the C++ code and used by the GUI code to output the best firebreak on the
landscape image.

Acknowledgements
I would like to thank the National Science Foundation for funding under NSF

Award No. IIS-0427471. I would like to thank my committee members, Dr. Michael
Berry, Dr. Louis Gross and Dr. David Banks. I would also like to thank TIEM members,
Dr. Shih-Lung Shaw, Dr. Dali Wang, Eric Carr, Jane Comiskey, Nick Buchanan and
Ling Yin.

References

Rothermel, R.C., 1972. A mathematical model for predicting fire spread in wildland
fuels. USDA For. Serv., Intermt For. and Range Exp. Stn, Ogden, UT. Res. Pap. INT-1
15: pp. 40.

Packages

libnoise

http://libnoise.sourceforge.net

Java Advanced Imaging

http://java.sun.com/products/java-media/jai/

15

Web References

Perlin Noise

http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html

Java API Specification, 1.5.0

http://java.sun.com/j2se/1.5.0/docs/api/

