A Cellular Automata Implementation of a Wildfire Spread

Model
Kristen J. Bains
Adviser: Michael Berry
November 6, 2006

This project's goal was to implement a wildfireesgal model with spatial control
using a cellular automaton. A literature searchrait find any apparent similar
approaches. Other cellular automata wildfire spr@adels exist, but my project makes
an attempt at implementing control techniques, ifipatly, the firebreak. My model
differs in the complexity of simulation as well. aky other models aim for accuracy by
using complicated mathematical models, such aRtteermel model. Although, my
model uses much simpler calculations, | believeitfaehaves realistically.

The project consists of two main components: alycaph user interface (GUI)
and the model simulation. I will discuss these ponents separately.

GUI

The GUI for this project was written in Java. davas chosen for it's extensive
library of GUI controls, Swing. The GUI consistisfour main areas. The menu bar is
used to control various aspects of model executidme control panel, located to the left
of the screen, allows the user to set various patens without needing to look in the
menu. The image area is located to the right@stitreen and is used to display the
maps, firebreaks, fire start locations, and outfrh the model. The palette is located
on the far right of the window and gives the usaumerical value for the colors used in
the image area.

Menu Bar

File Menu

1 Fire Model i The menu bar contains three main items. The
Ble| Reset Run file menu allows the user to load a pre-existing

- landscape file, load a previous configuration, save
Load landscape file
_ configuration, create a new landscape file, anttbgi
Create newy landscape file program. To load a landscape file, the user sekect
Load saved configuration landscape file from a file chooser dialog. Curkettie
Save configuration landscape files are located in the image directory.
Exit

Figure 1 File Menu

There are four pre-existing files in this directongmed andscape_#. bnp. The

program loads this file into the image area ofgbeeen by overriding paintComponenty().
This also writes the image filename and datasatdine tawi chl nage. dat and

whi chLandscape. dat respectively.

The menu item, “File->Load a previous configuratianay be of limited value to
the user, and was included mainly as a programiaiohg This action loads the image and
dataset filenames fromhi chl mage. dat andwhi chLandscape. dat , draws the
appropriate image to the screen, loads the firddsrand fire starts from file, and draws
these on the image. “Save configuration” simplytegrthe data required to load a
configuration to the needed files.

The create landscape menu item requires the aset some values in the control
panel area “Set values for new landscape”. Atheke fields have a default value, but
the user is encouraged to experiment with the biognabx values especially. These
values are used by théebnoi se module, which is a third-party library used to geaie
various kinds of noise. A simple explanation af ttounding box values can be found
here,http://libnoise.sourceforge.net/tutorials/tutoriéiBnl. The user can also select the
number of rows and columns for the new landscapename the file something relevant.
This filename will be given to both the image fled the data file. When the user selects
this option, the Java code writes an initializatib® | andscape/ i ni t. dat, and runs
| andscape/ gener at eMap. When generateMap runs to completion, a haligis
written to stdout and control is given back to @idl where the new landscape file is
loaded. Finally, the “File->Exit” option simply &g the program.

Reset Menu

The reset menu contains three options. “ReseteR@El” clears the image from
the screen and clears the firebreaks and firelsizations. “Reset->Reset breaks” does
not clear the landscape image, but clears andsrdsefire breaks. Similarly, “Reset-
>Reset starts” clears the fire start locations.

Run Menu

The run menu allows the user to “Run->Run the iodehis option writes the
firebreaks and fire starts to their respective fisga, writes the init file, and calls the
C++ model code. When the code returns the hatigsand control is returned to the
GUI, the newly burned cells are read frohmal . dat and drawn onto the landscape
image.

“Run->Play animation” can be selected after theleidas finished running. This
routine reads thiet er at i on. dat file and creates and animation of the fire. Cufitge
burning cells are drawn in a transparent red cahal the burned cells are drawn in a
transparent black. The transparency allows thetosasualize the initial firebreaks and
fire start locations.

Finally, “Run->Run optimization” requires the userselect an optimization
firebreak and a start location. If the firebreakot selected the user will be prompted.
Multiple start locations can be selected but ohbyfirst location selected will be used.
The user can also set some parameters on the kpatra in the “Optimization options”
area. “Percent map size to search” limits theckeamnge and “Orientation” allows the
user to select from amongst several options. @iem will refer to the direction that
the firebreak will “grow” during the optimizatioutine. The user is then prompted for
a filename for the output. | suggest using theingroonventiorr . opt , but any name is
acceptable. These files are stored in the dagatiry once the optimization routine is
finished. The routine writes the initializatiohefwith some added parameters that are
used by the optimization routines. The C++ codavsked, and when control returns to
the GUI, the best firebreak will be displayed oe ndscape image.

Control Pand

The control panel allows the user easy acces$ ob the parameters that can be
set. In this section I will fully describe eachtiop.

Select component to add
@ Firebreak) Location to start fire) Optimization firebreak

Options
Fire Break Width | 12— Fire Break Affect [_0._5_}%

Optimization options

Select neighborhood size
®3x3) 5xG

Select threshold values

Threshold 1| 0.35F] Threshotd 2| 0.65F [[] Muitipie time steps

Select seed value
Seed [301 | []Stochastic

Set values for new landscape
Eounding box values

Lower x| 0|-—J Upperx |

Select # rows/ cols |
Select name |landscape_new

Figure 2 Control Panel

Select component to add

This area allows the user to add componentsaadeld landscape image.
“Firebreak” lets the user draw a firebreak ontoithage, by clicking and dragging the
mouse. The program records the (X, y) coordinfates the mouse and stores the values
for later use. The firebreaks can be any shapecdtion to start fire” allows the user to
select a location to start a fire by clicking oe tmage. The selected locations are
indicated by a small blue bullseye shape. Multipkestart locations can be selected and
are saved and written to a text file. “Optimizatioebreak” is similar to selecting a fire
start. The user selects a location by clickingr@image and the location is indicated by
a small white bullseye shape. The user can otégsene location.

Options

This area contains a spinner that lets the usects@e width of the firebreak.
This width is currently not indicated on the lanaise image. The image only displays a
width of one. The minimum value is 1 and the maximvalue is 100, although these
values are easily changed in the GUI code. Anatpéon in this area is currently not
enabled. Allowing the computer to randomly asdignstart locations was an idea that |
discussed with Jane Comiskey but have not implesdeait this time.

Optimization options

“Percent map size to search” allows the usemid khe search range of the
optimization routine. Possible values range frdhd 100%, incrementable by 1%.
This value (Formula 1)is used while looping throdigbbreak lengths in the optimization
routine.

numRows [percentMapToSearch
Formula 1

The “Orientation” option contains four items imeop down box. “All”, “0”,
“45”, “90” and “135” are numerical values represagtdegrees. “0” degrees indicates a
north-south orientation. When a firebreak growsyill increase by 1 cell in the north
direction and 1 cell in the south direction, whiakans that each growth cycle of the
firebreak increases its length by two. When afi@break increases in width, it grows
in an easterly direction. “45” degrees indicatemeheast-southwest orientation. It also
grows by two cells each cycle; one cell towardribgheast and one cell toward the
southwest. When “45” degrees increases in widtraws in a southeasterly direction.
A “90” degree firebreak is oriented east-west, @éases length one cell east and one cell
west, and widens in a southerly direction. Findil\85” degrees indicates a northwest-
southeast orientation. See Figure 3 for furtharifoatation. By selecting “All”, the
optimization routine will loop through these thi@#entations and return the best
firebreak from the three. Other degrees of origoriacan be added by simply adding the
options to the drop down box in the GUI and addipgropriate routines in the C++ code

and in paintComponent().

Figure 3 Showing width and length growth for 0, 90and 45 degree orientations

Slect neighborhood size

This area contains a set of radio buttons, of Wwkive user can select one option.
“3x3” is the default option and causes the modelde the traditional 8-neighborhood.
“5x5” is an interesting option that uses a 24-nbmiood. One method of verifying
membership in a neighborhood is by using the digtdarmula, Formula 2. By taking
the floor of the result, you can determine whickghborhood a cell lies in. If the floor is
1, it is in the 8-neighborhood. If the floor isi®is in the 24-neighborhood.

((X1 _X2)2 +(y1 - yz)z)}/2

Formula 2

Salect threshold values

This area contains two spinners and a checkbdve checkbox allows the user to
run the simulation using multiple time steps. Teéault number of time steps is one,
meaning that once a cell begins burning, it wilf-se&tinguish on the next time step. If
the user has checked the “Multiple time steps” lzogell has the potential to burn for
two time steps. The values “Threshold 1” and “Bhi@d 2” control this behavior.
“Threshold 1” will be the lower value. If the fuéénsity of a cell is below this threshold,

the cell will not burn at all. This applies to gie time step burns as well as multiple time
step burns. “Threshold 2” will be larger than “€bhold 1”. If a cell's fuel density is
greater than “Threshold 27, the cell will burn taro time steps. For clarification, see
Table 1.

Fuel Density (f), Threshold 1 (t1), Threshold 2 Action
(t2)
f< tl Will not burn
tl<f<t2 Will burn 1 time step
f>1tl Can burn 2 time steps
Table 1
Select seed value

This area contains a text field, “Seed”, and ackhex, “Stochastic”. The value
entered into the text field will be used to segrbaudo-random number generator. If
stochastic is selected, when the simulation isingnf a cell can burn (based on the
threshold values described above), a random numilidye generated and used to decide
if the cell will burn or not.

Set values for new landscape

Finally, this area contains values that are ne@desh creating a new landscape
file. These are explained in detail in the “FileM” section of this document.

C++ Model Simulation

generateMap

Located in the landscape directory, generateM#pei€xecutable file used to
create new landscape maps.

| i bnoi se and Perlin noise

generateMap uses a third-party library callednoi se, which can be
downloaded fronittp://libnoise.sourceforge.net chose this library for its ability to
generate Perlin noise. Perlin noise was invenyelddn Perlin to generate textures for
the movieTron. Perlin noise can create realistic looking, ranijogenerated landscape
files, which I chose to use for the fuel densitypsianstead of obtaining real fuel load
maps. Thei bnoi se module requires theoi seuti | s files in the landscape directory
and the compiled libraries in the lib directory.

Figure 4 Perlin Noise Generated Image

landscape.cc, main.cc, landscape.h

These files call functions and library routinesnfrnoi seuti I s andl i bnoi se.
The initialization file is read and parsed to &t parameters that are needed to generate
a map. After the map has been created, an imegis §aved and the raw data is saved
to the data/andscape_#. dat file. Since Perlin noise generates numbers imdhge -1
to 1, these raw numbers are converted to the rangd. All fuel densities are in this
range. Some outliers in the raw data exist andrasted as special cases. The landscape
data file is written in the following format: thedt row contains the number of rows and
the number of columns in the dataset. Subsequerst @bthe file contain rows from the
raw data array.

Fire
The executable for the simulatiorfis e. There are two main classes defined for
the simulationCACell andCASpace.

cell.cc, cell.h

ThecAcedll class is defined and implementectét | . h andcel | . cc. This class
keeps information about each cell (see Table 2)e methods in this class

int burnState; BURNING, BURNED, FIREBREAK

int iterationFireStarts; the iteration numbertttee fire started

float slope; Not used

float fuelMoisture; Not used

float fuelDensity; The fuel density value of thisllc

int Row; The row number of this cell

int Col; The column number of this cell

int timeStepsToBurn; The number of time steps ¢kiscan potentially burn

int timeStepsBurned; The number of time stepsdalkactually burned

TolList toList; List of type std::list<Pair>, keepdist of the cells this cell spread fire to

Table 2 CACell Instance Variables

only perform the action of setting/changing insewmariable values or retrieving these
values. It would be extremely easy to add addiidmnctionality to this model by
simply adding new instance variables. For instaslogpe and fuelMoisture are currently
unused, but “layers” can be added to the model vatiables here and functionality in
the CASpace class.

space.cc, space. h

While thecacell class keeps information about individual cellg ¢hpace class,
contained withirspace. cc andspace. h, keeps information about the cellular automata
itself. In practical terms, this means tatpace runs the simulation. There are three
main methods used to run the simulation. initeffipace() creates the space, represented
by a vector of vector afAcell's. It also reads the fuel densities and firebsdedm file.
startFire() reads the start locations from file adds these locations to a list of currently
burning cells. go() begins the burn cycle.

The idea behind the burn cycle is to spread tlee ficach cell that is currently
burning is kept on a burn list. | iterate throubts list. For each cell on this list, I try to
spread the fire to it's neighbor cells. If thegidior cell can burn, it gets added to the end
of the burn list. After I've checked all of thdlseneighbors, | remove him from the burn

list. When the burn list is empty, | have spreaglfire to every possible cell and | can
exit. A cell can burn if it's fuel density is gteathan Threshold 1. If the stochastic flag
is selected, a random number will be generatecchadked against to determine if the
cell will burn. A cell will burn for two time stegif the multiple flag is selected and it's

Figure 5 Landscape with burned cells

fuel density is greater than Threshold 2. In th&tance, the cell will stay on the burning
list until after time step 2. At the end of the'baycle, the total number of burned cells
is calculated and the final burned cells are writtea file to be used by the GUI for
displaying the image.

CASpace also contains some methods to run the optimizabatine, but to explain
how the optimization routine works, we need to talstep back and look at main.cc, the
driver for the simulation.

main.cc

mai n. cc controls the simulation. It first reads and parigei ni t . dat file
(again, thanks to Dr. Banks for the parsing roytisets the global variables and begins
the simulation by calling initializeSpace() andrttae(). If the optimization flag is not
set, it proceeds by calling go(). However if thtimization flag is set, it takes a different
path. main.cc contains a routine called doOptflose first step is to run the simulation
to completion with a firebreak of length=1 and V=i, with origin at the location the
user selected. This can be accomplished by caliego() routine and retaining the total
number of cells burned. Once this is accomplishedloop through all of the user
selected orientations. Inside this loop, we Idapuagh the various lengths and widths.
To avoid having to run the simulation to completeach time, we can take advantage of
the fact that by starting with the smallest possivebreak, and by increasing it

incrementally, we can essentially reverse the file can do this by keeping track of
each cell that a fire spread to. For instanceglif42] was able to spread to cell[41] and
cell[43] but to no other cells, cell[42] would keapist: {41, 43}. We also need to keep
track of which cells are affected by a firebre&ar this implementation, the firebreak
will affect it's immediate neighbors, or those theg at a distance of 1 (see Formula 1).
For each lengthening cycle, we recalculate thectdtecells. If one of the newly affected
cells had burned previously, it is no longer burbedause the lengthened firebreak has
affected it, so that cell is put on the affectest &ind the total number of cells burned is
decreased by 1. We also have to check all of ¢éhdynaffected cells. We do this by
iterating through their toList. If one of the @etn their toList was burning, it is newly
affected, no longer burned, and the total numbeet$ burned decreases by 1. We
continue in this manner until we have reversediteeand we store the total number of
burned cells, the length and width of the firebresatd the orientation. See Figure 6for
an example. We can now determine what the mosttefe firebreak would be. This
data is written to a text file that is read by @l and the best break is displayed on the
image.

|| || || ||

I
Figure 6 Sequence demonstrating fire reversal algahm

Makefile and Performance

The Makefile used is fairly simple. It uses saneas from Dr. Banks to
automatically create pdf documents from the soaocke. When compiled without any
optimization flags, the code runs fairly slowlyorFa 500 x 500 grid, it takes
approximately two minutes for a complete burn, aelreg, of course, which machine is
running the code and what your connection speetiMisen compiled with the -O3 flag
and while running on a Cetus machine, executioe isrless than 30 seconds. On

10

Franken, it takes a little longer. The speed ef@UI is also dependent on the machine
and connection. While running on my laptop oveable modem, the GUI can be
annoyingly slow, not registering all of the mousedtions when selecting a firebreak,
but when running on a lab machine, it runs extrgraeioothly.

All source code has been tested, compiled andmurnux boxes. Parts of this
code have been converted to run under Cygwin onnal®Wws machine, so it is possible,
however, due to the many problems | encountereagdibiis | don't recommend it. The
source code is located in a CVS repository ate&es/bains/fire. A README file is
included to help with compilation and running.

Future Work

There are many things that could be done to ingend embellish this code. |
designed this code in C++ mainly so it would bdlga&xtensible. It is a fairly simple
task to add components to the Java GUI, and acusised earlier it is not difficult at all
to add “layers” to the CA. For instance, the rayer | would consider adding would be
fuel moisture. To do this, you would add a instanariable to theacell, fuelMoisture.
You would add two methods: one to set the variabl® one to get the variable. Then
you would need to consider how the fuel moisture@ffect how the cell burns and
add the corresponding codedaspace. Examples of other “layers” that could be added
include wind, slope, fire temperature, and fuel shurie.

Some issues that | was unable to resolve incladmg the firebreak as you draw
it, showing the actual width of the firebreak oe tmage, adding other control methods,
adding more orientations, and adding “real” optiatizn. | think it would also be nice to
load an actual landscape or fuel density file femmESRI product, burn the fire, and then
be able to view the output in the GIS. This casilg be accomplished with some
sample code furnished by Eric Carr.

» Extend control techniques

o0 Chemical control

0 Helicopter/dumping water
* Extend model parameters

o Wind

o Slope

o Fuel moisture

o Fire temperature

* GA or Linear programming based optimization

11

* Implement model with Openinventor

* Implement reading ASCII grid files

Output

The first sample output was run on landscape_0@8av90 degree orientation
and searching 70% of the map space. Notice tleat ik a sharp drop off at
approximately length 120 and by length 225 theeenar more cells burning.

Output 1
200000
180000
160000
140000
120000

100000

burned

80000

60000

40000

20000

0

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169
Break length

The second sample was run on landscape_004 withemtation of 45 degrees
and searching 75% of the map space. The numbmrroéd cells decreases linearly until
it levels out at length 207.

12

Output 2

180000
160000

140000 \

120000 \

100000

#burned

80000

60000

40000

20000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169
Break length

Directory Structure

It may be helpful to have a description of theediory structure of this project.
The main directory is namédre. There are several subdirectories which are itapor
All of the image files are located in themge directory. Source code documentation is
located indoc. Thedat a directory contains initialization files for the €€ode and raw
data files. Thencl ude directory contains all of the C++ header files émel i b
directory contains library files far bnoi se, third-party software that is used to create
new landscapes. Theol s directory contains a file to create automatic sewode
documentation. Lastly, theandscape directory contains the C++ source code that is
used to create new landscape files. ddreer at eMap executable uses an initialization
file, and it is also located in thendscape directory. Both théandscape directory and
thefire directory have separate makefiles. One othetdileote isset up. csh, located
in thefire directory. This file, when sourced, sets envirentrnvariables that are needed
for the project to compile and run. The mgime directory also houses all of the java
source and class files and the C++ source codefbiethe model.

The files located in the data directory may regjgiome clarification. The GUI
portion of this project is written in Java, but thedel backbone is written in C++. There
does not exist a clean method of passing paramfetensa Java executable to a C++
executable, therefore | use several data/text tiledlow the passing of parameters.

i nit.dat is an initialization file that contains severatgaeters that are entered by the

13

user. The main C++ routine contains a function paaises this file and sets global
variables for use by the model. (This parsingireuwas borrowed from Dr. David
Banks.) whi chl mage. dat andwhi chLandscape. dat are files that are used by the GUI
code to keep track of the landscape data and ifilagames.st art . dat and

firebreak. dat contain the (x, y) coordinates of the user setkfite starts and
firebreaks respectively. These are used in balgva and the C++ codgi.nal . dat is
written by the C++ code after the model has fintshed contains the (X, y) coordinates
of the burned cells. This is used by the GUI tawdthe burned cells on the image.
Similarly,i teration. dat contains an array of time steps which are useith®¥UI to
display an animation of the fire. The data diregtso houses the landscape data files,
usually named andscape_#. dat , but can be called anything. Each landscapefiiata
has a matching file in the image directory. Thead#es contain an array of fuel
densities. Finally, theandscape directory contains. opt files, which are the output
files from the optimization routine. They list tteal number of cells burned, the length
and width, and the orientation for each run ofdp&mization routine. These files are
written by the C++ code and used by the GUI codautput the best firebreak on the
landscape image.

Acknowledgements

I would like to thank the National Science Founadiatior funding under NSF
Award No. 1S-0427471. 1 would like to thank myrmomittee members, Dr. Michael
Berry, Dr. Louis Gross and Dr. David Banks. | wibalso like to thank TIEM members,
Dr. Shih-Lung Shaw, Dr. Dali Wang, Eric Carr, J&mmiskey, Nick Buchanan and
Ling Yin.

References

Rothermel, R.C., 1972. A mathematical model fodprtng fire spread in wildland
fuels. USDA For. Serv., Intermt For. and Range Ep, Ogden, UT. Res. Pap. INT-1
15: pp. 40.

Packages

libnoise
http://libnoise.sourceforge.net

Java Advanced Imaging
http://java.sun.com/products/java-media/jai/

14

Web References

Perlin Noise
http://www.cs.cmu.edu/~mzucker/code/perlin-noisgirfaqg.html

Java API Specification, 1.5.0
http://java.sun.com/j2se/1.5.0/docs/api/

15

