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 This project's goal was to implement a wildfire spread model with spatial control 
using a cellular automaton.  A literature search did not find any apparent similar 
approaches.  Other cellular automata wildfire spread models exist, but my project makes 
an attempt at implementing control techniques, specifically, the firebreak.  My model 
differs in the complexity of simulation as well.  Many other models aim for accuracy by 
using complicated mathematical models, such as the Rothermel model.  Although, my 
model uses much simpler calculations, I believe that it behaves realistically.   

 

The project consists of two main components: a graphical user interface (GUI) 
and the model simulation.  I will discuss these components separately. 

 

GUI 
 
 The GUI for this project was written in Java.  Java was chosen for it's extensive 
library of GUI controls, Swing.  The GUI consists of four main areas.  The menu bar is 
used to control various aspects of model execution.  The control panel, located to the left 
of the screen, allows the user to set various parameters without needing to look in the 
menu.  The image area is located to the right of the screen and is used to display the 
maps, firebreaks, fire start locations, and output from the model.  The palette is located 
on the far right of the window and gives the user a numerical value for the colors used in 
the image area. 

 

Menu Bar 
 

File Menu 
 
 The menu bar contains three main items.   The 
file menu allows the user to load a pre-existing 
landscape file, load a previous configuration, save a 
configuration, create a new landscape file, and exit the 
program.  To load a landscape file, the user selects a 
landscape file from a file chooser dialog.  Currently the 
landscape files are located in the image directory.  

Figure 1 File Menu 
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There are four pre-existing files in this directory, named landscape_#.bmp.  The 
program loads this file into the image area of the screen by overriding paintComponent().  
This also writes the image filename and dataset filename to whichImage.dat and 
whichLandscape.dat respectively. 

 

 The menu item, “File->Load a previous configuration”, may be of limited value to 
the user, and was included mainly as a programming aid.  This action loads the image and 
dataset filenames from whichImage.dat and whichLandscape.dat, draws the 
appropriate image to the screen, loads the firebreaks and fire starts from file, and draws 
these on the image.  “Save configuration” simply writes the data required to load a 
configuration to the needed files. 

 

 The create landscape menu item requires the user to set some values in the control 
panel area “Set values for new landscape”.  All of these fields have a default value, but 
the user is encouraged to experiment with the bounding box values especially.  These 
values are used by the libnoise module, which is a third-party library used to generate 
various kinds of noise.  A simple explanation of the bounding box values can be found 
here, http://libnoise.sourceforge.net/tutorials/tutorial3.html.  The user can also select the 
number of rows and columns for the new landscape and name the file something relevant.  
This filename will be given to both the image file and the data file.  When the user selects 
this option, the Java code writes an initialization file, landscape/init.dat, and runs 
landscape/generateMap.  When generateMap runs to completion, a halt string is 
written to stdout and control is given back to the GUI where the new landscape file is 
loaded.  Finally, the “File->Exit” option simply exits the program.  

 

Reset Menu 
 
 
 The reset menu contains three options.  “Reset->Reset All” clears the image from 
the screen and clears the firebreaks and fire start locations.  “Reset->Reset breaks” does 
not clear the landscape image, but clears and resets the fire breaks.  Similarly,  “Reset-
>Reset starts” clears the fire start locations. 

 
 
 

Run Menu 
 
 The run menu allows the user to “Run->Run the model”.  This option writes the 
firebreaks and fire starts to their respective data files, writes the init file, and calls the 
C++ model code.  When the code returns the halt string and control is returned to the 
GUI, the newly burned cells are read from final.dat and drawn onto the landscape 
image. 
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 “Run->Play animation” can be selected after the model has finished running.  This 
routine reads the iteration.dat file and creates and animation of the fire.  Currently 
burning cells are drawn in a transparent red color and the burned cells are drawn in a 
transparent black.  The transparency allows the user to visualize the initial firebreaks and 
fire start locations. 

 

 Finally, “Run->Run optimization” requires the user to select an optimization 
firebreak and a start location.  If the firebreak is not selected the user will be prompted.  
Multiple start locations can be selected but only the first location selected will be used.    
The user can also set some parameters on the control panel in the “Optimization options” 
area.  “Percent map size to search” limits the search range and “Orientation” allows the 
user to select from amongst several options.  Orientation will refer to the direction that 
the firebreak will “grow” during the optimization routine.  The user is then prompted for 
a filename for the output.  I suggest using the naming convention *.opt, but any name is 
acceptable.  These files are stored in the data directory once the optimization routine is 
finished.  The routine writes the initialization file with some added parameters that are 
used by the optimization routines.  The C++ code is invoked, and when control returns to 
the GUI, the best firebreak will be displayed on the landscape image.  

 
 

Control Panel 
 
 The control panel allows the user easy access to all of the parameters that can be 
set.  In this section I will fully describe each option. 
 

 
Figure 2 Control Panel 
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Select component to add 
 
 This area allows the user to add components to a loaded landscape image.  
“Firebreak” lets the user draw a firebreak onto the image, by clicking and dragging the 
mouse.  The program records the (x, y) coordinates from the mouse and stores the values 
for later use.  The firebreaks can be any shape.  “Location to start fire” allows the user to 
select a location to start a fire by clicking on the image.  The selected locations are 
indicated by a small blue bullseye shape.  Multiple fire start locations can be selected and 
are saved and written to a text file.  “Optimization firebreak” is similar to selecting a fire 
start.  The user selects a location by clicking on the image and the location is indicated by 
a small white bullseye shape.  The user can only select one location. 

 

Options 
 This area contains a spinner that lets the user select the width of the firebreak.  
This width is currently not indicated on the landscape image.  The image only displays a 
width of one.  The minimum value is 1 and the maximum value is 100, although these 
values are easily changed in the GUI code.  Another option in this area is currently not 
enabled.  Allowing the computer to randomly assign fire start locations was an idea that I 
discussed with Jane Comiskey but have not implemented at this time. 

 

Optimization options 
 
 “Percent map size to search” allows the user to limit the search range of the 
optimization routine.  Possible values range from 10 to 100%, incrementable by 1%.  
This value (Formula 1)is used while looping through firebreak lengths in the optimization 
routine.  

ToSearchpercentMap numRows ∗  
Formula 1 

  

 
 The “Orientation” option contains four items in a drop down box.  “All”, “0”, 
“45”, “90” and “135” are numerical values representing degrees.  “0” degrees indicates a 
north-south orientation.  When a firebreak grows, it will increase by 1 cell in the north 
direction and 1 cell in the south direction, which means that each growth cycle of the 
firebreak increases its length by two.  When a “0” firebreak increases in width, it grows 
in an easterly direction.  “45” degrees indicates a northeast-southwest orientation.  It also 
grows by two cells each cycle; one cell toward the northeast and one cell toward the 
southwest.  When “45” degrees increases in width, it grows in  a southeasterly direction.  
A “90” degree firebreak is oriented east-west, increases length one cell east and one cell 
west, and widens in a southerly direction.  Finally, “135” degrees indicates a northwest-
southeast orientation.  See Figure 3 for further clarification.  By selecting “All”, the 
optimization routine will loop through these three orientations and return the best 
firebreak from the three.  Other degrees of orientation can be added by simply adding the 
options to the drop down box in the GUI and adding appropriate routines in the C++ code 
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and in paintComponent(). 
 
 

 
Figure 3 Showing width and length growth for 0, 90, and 45 degree orientations 
 

Select neighborhood size 
 
 This area contains a set of radio buttons, of which the user can select one option.  
“3x3” is the default option and causes the model to use the traditional 8-neighborhood.  
“5x5” is an interesting option that uses a 24-neighborhood.  One method of verifying 
membership in a neighborhood is by using the distance formula, Formula 2.  By taking 
the floor of the result, you can determine which neighborhood a cell lies in.  If the floor is 
1, it is in the 8-neighborhood.  If the floor is 2, it is in the 24-neighborhood. 

 
 

( ) ( )( ) 2
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Formula 2 
 

Select threshold values  
 
 This area contains two spinners and a checkbox.  The checkbox allows the user to 
run the simulation using multiple time steps.  The default number of time steps is one, 
meaning that once a cell begins burning, it will self-extinguish on the next time step.  If 
the user has checked the “Multiple time steps” box, a cell has the potential to burn for 
two time steps.  The values “Threshold 1” and “Threshold 2” control this behavior.  
“Threshold 1” will be the lower value.  If the fuel density of a cell is below this threshold, 
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the cell will not burn at all.  This applies to single time step burns as well as multiple time 
step burns.  “Threshold 2” will be larger than “Threshold 1”.  If a cell's fuel density is 
greater than “Threshold 2”, the cell will burn for two time steps.  For clarification, see 
Table 1. 

 
Fuel Density (ƒ), Threshold 1 (t1), Threshold 2 

(t2) 
Action 

ƒ <   t1 Will not burn 

t1 < ƒ <  t2 Will burn 1 time step 

ƒ >  t1 Can burn 2 time steps 

Table 1 

Select seed value 
 This area contains a text field, “Seed”, and a checkbox, “Stochastic”.  The value 
entered into the text field will be used to seed a pseudo-random number generator.  If 
stochastic is selected, when the simulation is running, if a cell can burn (based on the 
threshold values described above), a random number will be generated and used to decide 
if the cell will burn or not.   

 
 

Set values for new landscape 
 Finally, this area contains values that are needed when creating a new landscape 
file.  These are explained in detail in the “File Menu” section of this document. 

 
 

C++ Model Simulation 
 

generateMap 
 Located in the landscape directory, generateMap is the executable file used to 
create new landscape maps.   

 

libnoise and Perlin noise 
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 generateMap uses a third-party library called libnoise, which can be 
downloaded from http://libnoise.sourceforge.net.  I chose this library for its ability to 
generate Perlin noise.  Perlin noise was invented by Ken Perlin to generate textures for 
the movie Tron.  Perlin noise can create realistic looking, randomly generated landscape 
files, which I chose to use for the fuel density maps, instead of obtaining real fuel load 
maps.  The libnoise module requires the noiseutils files in the landscape directory 
and the compiled libraries in the lib directory. 

 

 

landscape.cc, main.cc, landscape.h    

 These files call functions and library routines from noiseutils and libnoise. 
The initialization file is read and parsed to set the parameters that are needed to generate 
a map.  After the map has been created, an image file is saved and the raw data is saved 
to the data/landscape_#.dat file.  Since Perlin noise generates numbers in the range -1 
to 1, these raw numbers are converted to the range 0 to 1. All fuel densities are in this 
range.  Some outliers in the raw data exist and are treated as special cases.  The landscape 
data file is written in the following format: the first row contains the number of rows and 
the number of columns in the dataset. Subsequent rows of the file contain rows from the 
raw data array. 

 
 
 

Fire 
 The executable for the simulation is fire.  There are two main classes defined for 
the simulation: CACell and CASpace. 

Figure 4 Perlin Noise Generated Image 
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cell.cc, cell.h 

 The CACell class is defined and implemented in cell.h and cell.cc.  This class 
keeps information about each cell (see Table 2).  The methods in this class    

 
int burnState; BURNING, BURNED, FIREBREAK 

int iterationFireStarts;   the iteration number that the fire started 

float slope; Not used  

float fuelMoisture; Not used 

float fuelDensity; The fuel density value of this cell 

int Row; The row number of this cell 

int Col; The column number of this cell 

int timeStepsToBurn; The number of time steps this cell can potentially burn 

int timeStepsBurned; The number of time steps this cell actually burned 

ToList toList; List of type std::list<Pair>, keeps a list of the cells this cell spread fire to 

Table 2 CACell Instance Variables 
  
 
only perform the action of setting/changing instance variable values or retrieving these 
values.  It would be extremely easy to add additional functionality to this model by 
simply adding new instance variables.  For instance, slope and fuelMoisture are currently 
unused, but “layers” can be added to the model with variables here and functionality in 
the CASpace class. 

 

space.cc, space.h 
 
 While the CACell class keeps information about individual cells, the CASpace class, 
contained within space.cc and space.h, keeps information about the cellular automata 
itself.  In practical terms, this means that CASpace runs the simulation.  There are three 
main methods used to run the simulation.  initializeSpace() creates the space, represented 
by a vector of vector of CACell's.  It also reads the fuel densities and firebreaks from file.  
startFire() reads the start locations from file and adds these locations to a list of currently 
burning cells.  go() begins the burn cycle.   

 
 The idea behind the burn cycle is to spread the fire.  Each cell that is currently 
burning is kept on a burn list.  I iterate through this list.  For each cell on this list, I try to 
spread the fire to it's neighbor cells.  If the neighbor cell can burn, it gets added to the end 
of the burn list.  After I've checked all of the cells neighbors, I remove him from the burn 
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list.  When the burn list is empty, I have spread the fire to every possible cell and I can 
exit.  A cell can burn if it's fuel density is greater than Threshold 1.  If the stochastic flag 
is selected, a random number will be generated and checked against to determine if the 
cell will burn.  A cell will burn for two time steps if the multiple flag is selected and it's 

fuel density is greater than Threshold 2.  In this instance, the cell will stay on the burning 
list until after time step 2.  At the end of the burn cycle, the total number of burned cells 
is calculated and the final burned cells are written to a file to be used by the GUI for 
displaying the image. 

 
 CASpace also contains some methods to run the optimization routine, but to explain 
how the optimization routine works, we need to take a step back and look at main.cc, the 
driver for the simulation. 

 
 

main.cc 
 
 main.cc controls the simulation.  It first reads and parses the init.dat file 
(again, thanks to Dr. Banks for the parsing routine), sets the global variables and begins 
the simulation by calling initializeSpace() and startFire().  If the optimization flag is not 
set, it proceeds by calling go().  However if the optimization flag is set, it takes a different 
path.  main.cc contains a routine called doOpt(), whose first step is to run the simulation 
to completion with a firebreak of length=1 and width=1, with origin at the location the 
user selected.  This can be accomplished by calling the go() routine and retaining the total 
number of cells burned.  Once this is accomplished, we loop through all of the user 
selected orientations.  Inside this loop, we loop through the various lengths and widths.  
To avoid having to run the simulation to completion each time, we can take advantage of 
the fact that by starting with the smallest possible firebreak, and by increasing it 

Figure 5 Landscape with burned cells 
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incrementally, we can essentially reverse the fire.  We can do this by keeping track of 
each cell that a fire spread to.  For instance, if cell[42] was able to spread to cell[41] and 
cell[43] but to no other cells, cell[42] would keep a list: {41, 43}.  We also need to keep 
track of which cells are affected by a firebreak.  For this implementation, the firebreak 
will affect it's immediate neighbors, or those that are at a distance of 1 (see Formula 1).  
For each lengthening cycle, we recalculate the affected cells.  If one of the newly affected 
cells had burned previously, it is no longer burned because the lengthened firebreak has 
affected it, so that cell is put on the affected list and the total number of cells burned is 
decreased by 1.  We also have to check all of the newly affected cells.  We do this by 
iterating through their toList.  If one of the cells on their toList was burning, it is newly 
affected, no longer burned, and the total number of cells burned decreases by 1.  We 
continue in this manner until we have reversed the fire and we store the total number of 
burned cells, the length and width of the firebreak, and the orientation.  See Figure 6for 
an example.  We can now determine what the most effective firebreak would be.  This 
data is written to a text file that is read by the GUI and the best break is displayed on the 
image. 

 
Figure 6 Sequence demonstrating fire reversal algorithm 

Makefile and Performance 
 
 The Makefile used is fairly simple.  It uses some ideas from Dr. Banks to 
automatically create pdf documents from the source code.  When compiled without any 
optimization flags, the code runs fairly slowly.  For a 500 x 500 grid, it takes 
approximately two minutes for a complete burn, depending, of course, which machine is 
running the code and what your connection speed is.  When compiled with the -O3 flag 
and while running on a Cetus machine, execution time is less than 30 seconds.  On 
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Franken, it takes a little longer.  The speed of the GUI is also dependent on the machine 
and connection.  While running on my laptop over a cable modem, the GUI can be 
annoyingly slow, not registering all of the mouse locations when selecting a firebreak, 
but when running on a lab machine, it runs extremely smoothly. 

 All source code has been tested, compiled and run on Linux boxes.  Parts of this 
code have been converted to run under Cygwin on a Windows machine, so it is possible, 
however, due to the many problems I encountered doing this I don't recommend it.  The 
source code is located in a CVS repository at  /research/bains/fire.  A README file is 
included to help with compilation and running. 

 
 
 

Future Work  
 
 There are many things that could be done to improve and embellish this code.  I 
designed this code in C++ mainly so it would be easily extensible.  It is a fairly simple 
task to add components to the Java GUI, and as I discussed earlier it is not difficult at all 
to add “layers” to the CA.  For instance, the next layer I would consider adding would be 
fuel moisture.  To do this, you would add a instance variable to the CACell, fuelMoisture.  
You would add two methods: one to set the variable and one to get the variable.  Then 
you would need to consider how the fuel moisture would affect how the cell burns and 
add the corresponding code to CASpace.  Examples of other “layers” that could be added 
include wind, slope, fire temperature, and fuel moisture. 

 
 Some issues that I was unable to resolve include seeing the firebreak as you draw 
it, showing the actual width of the firebreak on the image, adding other control methods, 
adding more orientations, and adding “real” optimization.  I think it would also be nice to 
load an actual landscape or fuel density file from an ESRI product, burn the fire, and then 
be able to view the output in  the GIS.  This can easily be accomplished with some 
sample code furnished by Eric Carr. 

 

• Extend control techniques 

o Chemical control 

o Helicopter/dumping water 

• Extend model parameters 

o Wind 

o Slope 

o Fuel moisture 

o Fire temperature 

• GA or Linear programming based optimization 
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• Implement model with OpenInventor 

• Implement reading ASCII grid files 

Output 
 
 The first sample output was run on landscape_003 with a 90 degree orientation 
and searching 70% of the map space.  Notice that there is a sharp drop off at 
approximately length 120 and by length 225 there are no more cells burning. 
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 The second sample was run on landscape_004 with an orientation of 45 degrees 
and searching 75% of the map space.  The number of burned cells decreases linearly until 
it levels out at length 207. 
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Output 2
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Directory Structure 
 
 It may be helpful to have a description of  the directory structure of this project.  
The main directory is named fire.  There are several subdirectories which are important.  
All of the image files are located in the image directory.  Source code documentation is 
located in doc.  The data directory contains initialization files for the C++ code and raw 
data files.  The include directory contains all of the C++ header files and the lib 
directory contains library files for libnoise, third-party software that is used to create 
new landscapes.  The tools directory contains a file to create automatic source code 
documentation.  Lastly, the landscape directory contains the C++ source code that is 
used to create new landscape files.  The generateMap executable uses an initialization 
file, and it is also located in the landscape directory.  Both the landscape directory and 
the fire directory have separate makefiles.  One other file to note is setup.csh, located 
in the fire directory.  This file, when sourced, sets environment variables that are needed 
for the project to compile and run.  The main fire directory also houses all of the java 
source and class files and the C++ source code files for the model. 

 

 The files located in the data directory may require some clarification.  The GUI 
portion of this project is written in Java, but the model backbone is written in C++.  There 
does not exist a clean method of passing parameters from a Java executable to a C++ 
executable, therefore I use several data/text files to allow the passing of parameters.  
init.dat is an initialization file that contains several parameters that are entered by the 
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user.  The main C++ routine contains a function that parses this file and sets global 
variables for use by the model.   (This parsing routine was borrowed from Dr. David 
Banks.)  whichImage.dat and whichLandscape.dat are files that are used by the GUI 
code to keep track of the landscape data and image filenames.  start.dat and 
firebreak.dat contain the (x, y) coordinates of the user selected fire starts and 
firebreaks respectively.  These are used in both the Java and the C++ code.  final.dat is 
written by the C++ code after the model has finished and contains the (x, y) coordinates 
of the burned cells.  This is used by the GUI to draw the burned cells on the image.  
Similarly, iteration.dat contains an array of time steps which are used by the GUI to 
display an animation of the fire.  The data directory also houses the landscape data files, 
usually named landscape_#.dat, but can be called anything.  Each landscape data file 
has a matching file in the image directory.  The data files contain an array of fuel 
densities.  Finally, the landscape directory contains *.opt files, which are the output 
files from the optimization routine.  They list the total number of cells burned, the length 
and width, and the orientation for each run of the optimization routine.  These files are 
written by the C++ code and used by the GUI code to output the best firebreak on the 
landscape image. 
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