A Finite State Machine Approach to Cluster Identification Using the Hoshen-Kopelman Algorithm

Matthew Aldridge

Objective

Cluster Identification

- Want to find and identify homogeneous patches in a 2D matrix, where:
 - Cluster membership defined by adjacency
 - No need for distance function
 - Sequential cluster IDs not necessary
- Common task in analysis of geospatial data (landscape maps)

Hoshen-Kopelman Algorithm

Overview

- Assigns unique IDs to homogeneous regions in a lattice
- Handles only one target class at a time
 - Lattice preprocessing needed to filter out unwanted classes
- Single-pass cluster identification
 - Second pass to relabel temporary IDs, but not strictly necessary
- 2-D lattice represented as matrix herein

Hoshen-Kopelman Algorithm

Data structures

- Matrix
 - Preprocessed to replace target class with -1, everything else with 0
- Cluster ID/size array ("csize")
 - Indexing begins at 1
 - Index represents cluster ID
 - Positive values indicate cluster size
 - Proper cluster label
 - Negative values provide ID redirection
 - Temporary cluster label

Hoshen-Kopelman Algorithm

csize array

- + values: cluster size
 - Cluster 2 has 8 members
- values: ID redirection
 - Cluster 4 is the same as cluster 1, same as cluster 3
 - Cluster 4/1/3 has 5 members
 - Redirection allowed for noncircular, recursive path for finite number of steps

Hoshen-Kopelman Algorithm

Clustering procedure

- Matrix traversed row-wise
- If current cell nonzero
 - Search for nonzero (target class) neighbors
 - If no nonzero neighbors found ...
 - Give cell new label
 - Else ...
 - Find proper labels K of nonzero neighbor cells
 - min(*K*) is the new proper label for current cell and nonzero neighbors

Hoshen-Kopelman Algorithm

Nearest-Four Neighborhood

- North/East/West/South neighbors
- Used in classic HK implementations
- Of the four neighbors, only N/W have been previously labeled at any given time

Hoshen-Kopelman Algorithm

Nearest-4 HK in action...

-1	0	-1	0	0	-1	-1	0
-1	0	-1	0	-1	-1	0	-1
0	0	-1	-1	-1	-1	0	-1
-1	-1	0	-1	0	-1	0	-1
-1	0	0	0	-1	0	-1	0
-1 -1	0 0	0 0	0 -1	-1 -1	0 0	-1 0	0
-1 -1 0	0 0 0	0 0 -1	0 -1 -1	-1 -1 -1	0 0 -1	-1 0 0	0 0 -1

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0

- Matrix has been preprocessed
 - Target class value(s) replaced with -1, all others with *0*

Hoshen-Kopelr	nan Algorithm	Hoshen-Kopelman Algorithm
Nearest-4 HK in ac 1 0 2 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 -1 0 -1 0 -1 0 -1 0 0 -1 -1 0 -1 0 -1 0 0 -1 -1 0 0 -1 0 -1 0 0 -1 -1 0 0 -1 0 -1 0 0 -1 -1 1 0 0 0 -1 0 -1 0 0 -1 -1 1 0 0 -1 1 0 0 0 -1 -1 -1 0 0 -1 1 0 0 0 -1 -1 -1 0 0 1 1 0 0 0 -1 -1 -1 0 0 0 0	tion 3 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 2 0 0 3 3 0 -1 0 -1 0 -1 1 1 1 0 0 -1 1 1 0 -1 2 0 0 -1 0 -1 0 -1 2 1 0 0 -1 0 -1 0 -1 3 2 1 0 -1 1 1 0 -1 3 3 0 -1 0 -1 1 1 0 -1 4 0 -1 0 0 -1 0 -1 0 -1 5 0 -1 0 0 -1 1 0 -1 0 10 0 0 0 -1 -1 1 0 -1 1 1 1 1 0 0 -1 -1 1 0 -1 1 1 1 1 1 1 1
Ignore N neighbor	check	
Hoshen-Kopelr	nan Algorithm	Hoshen-Kopelman Algorithm
Nearest-4 HK in ac 1 0 2 0 0 1 0 -1 0 -1 -1 0 0 -1 -1 -1 -1 -1 -1 0 -1 0 -1 -1 0 0 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1 0 0 -1 -1 -1 -1	tion 3 3 0 1 2 -1 0 -1 2 1 -1 0 -1 3 2 -1 0 -1 3 2 -1 0 -1 4 0 -1 0 -1 6 0 0 -1 0 7 0 0 0 0 9 0 -1 0 -1 10 0 -1 0 -1 11 0 -1 0 -1 12 0	Nearest-4 HK in action 1 0 2 0 0 3 3 0 1 0 -1 0 -1 1 0 -1 0 0 -1 0 -1 1 2 1 0 0 -1 1 1 0 -1 -1 0 -1 1 0 -1 3 2 -1 1 0 -1 1 1 1 1 2 -1 1 0 -1 1 1 1 1 1 2 -1 1 0 -1 1 0 -1 3 2 -1 0 0 -1 0 -1 0 -1 6 0 -1 0 0 -1 1 0 0 0 9 0 0 0 -1 -1 1 0 1 1 1 1 1 0 0 -1 1<

Hoshen-Kopelman Algorithm	Hoshen-Kopelman Algorithm	
1 0 2 0 0 3 3 0 1 0 2 0 -1 1 0 -1 0 0 -1 -1 0 -1 2 2 1 0 2 0 -1 1 0 -1 0 0 -1 -1 0 -1 -1 -1 -1 -1 -1 0 -1 0 -1 0 -1 1 -1 1 1 -1 1	Nearest-4 HK in action 1 0 2 0 3 3 0 1 0 2 0 1 1 2 2 1 0 2 0 1 1 0 1 1 2 2 1 0 2 0 1 1 0 1 1 2 2 0 0 1 1 0 1 0 1	
Hoshen-Kopelman Algorithm	Hoshen-Kopelman Algorithm	
1 0 2 0 0 3 3 0 1 0 2 0 4 -1 0 -1 0 0 -1 -1 0 -1 2 2 0 0 -1 -1 0 -1 3 2 -1 0 0 -1 0 -1 4 1 -1 1 0 -1 0 -1 0 8 0 -1 0 0 -1 -1 0 0 1 1 1 1 0 0 -1 -1 0 0 1 1 1 1 1 0 0 -1 -1 0 -1 1 <th>Nearest-4 HK in action 1 0 2 0 3 3 0 1 0 2 0 4 3 1 2 2 1 0 2 1 4 3 4 3 0 -1 -1 0 -1 0 -1 0 1 4 3 1 1 0 -1 0 -1 0 -1 0 1 6 0 -1 0 0 -1 0 -1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1<th></th></th>	Nearest-4 HK in action 1 0 2 0 3 3 0 1 0 2 0 4 3 1 2 2 1 0 2 1 4 3 4 3 0 -1 -1 0 -1 0 -1 0 1 4 3 1 1 0 -1 0 -1 0 -1 0 1 6 0 -1 0 0 -1 0 -1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 <th></th>	

Hoshen-Kopel	man Algorithm	Hoshen-Kopelman Algorithm
Nearest-4 HK in a 1 0 2 0 0 1 0 2 0 4 0 0 -1 -1 -1 -1 -1 0 -1 0 -1 0 0 0 -1 -1 0 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 -1 0 0 -1 -1 -1	3 3 0 1 2 2 3 0 -1 2 2 2 -1 0 -1 3 4 -3 -1 0 -1 4 -3 -3 -1 0 -1 6 0 0 0 9 0 0 0 0 0 9 0 10 0 11 0 -1 11 0 -1 12 0	1 0 2 0 0 3 0 1 2 2 3 4 1 2 2 3 4 4 3 1 1 2 2 3 4 4 3 1 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1
Hoshen-Kopel	man Algorithm	Hoshen-Kopelman Algorithm
Nearest-4 HK in at 1 0 2 0 0 1 0 2 0 4 0 0 2 2 2 -1 -1 0 -1 0 -1 0 0 0 -1 -1 0 0 -1 1 0 0 -1 -1 1 0 0 -1 -1 1	3 3 0 1 2 3 0 5 2 10 3 0 5 2 10 2 0 5 4 -3 -1 0 -1 6 0 0 -1 0 8 0 0 0 0 9 0 -1 0 -1 11 0 -1 0 -1 12 0	1 0 2 0 0 3 3 0 1 2 1 2 1 2 1 1 2 1 1 2 1 1 1 2 0 4 3 0 5 1 2 1

Hoshen-Kopelman Algorithm

Nearest-4 HK in action...

1	0	2	0	0	3	3	0
1	0	2	0	4	3	0	5
0	0	2	2	2	2	0	5
6	6	0	2	0	2	0	5
6	0	0	0	7	0	8	0
6	0	0	9	7	0	0	0
0	0	10	7	7	7	0	11
0	0	7	7	7	7	0	11

Skipping ahead

Hoshen-Kopelman Algorithm

Nearest-4 HK in action...

1	0	2	0	0	2	2	0	
1	0	2	0	2	2	0	5	
0	0	2	2	2	2	0	5	
6	6	0	2	0	2	0	5	
6	0	0	0	7	0	8	0	
6	0	0	7	7	0	0	0	
0	0	7	7	7	7	0	11	
0	0	7	7	7	7	0	11	

1	2	
2	12	
3	-2	
4	-3	
5	3	
6	3	
7	11	
8	1	
9	-7	
10	-7	
1 2 2 12 3 -2 4 -3 5 3 6 3 7 11 8 1 9 -7 10 -7 11 2 12 0		
12	0	

Optional second pass to relabel cells to their proper labels

Hoshen-Kopelman Algorithm

Nearest-Eight Neighborhood

- NW, N, NE, E, SE, S, SW, W
- When examining a cell, compare to W, NW, N, NE neighbors

Hoshen-Kopelman Algorithm

Nearest-Eight Neighborhood

- Sometimes more appropriate in landscape analysis
- Rasterization can segment continuous features if only using nearest-four neighborhood

Hoshen-Kopelman Algorithm

Nearest-4 vs. Nearest-8 Results

1	0	2	0	0	2	2	0
1	0	2	0	2	2	0	2
0	0	2	2	2	2	0	2
2	2	0	2	0	2	0	2
2	0	0	0	2	0	2	0
2	0	0	2	2	0	0	0
0	0	2	2	2	2	0	5
0	Δ	2	2	2	2	Δ	5

UNION-FIND Algorithm

Disjoint-Set Data Structure Operations

- MAKE-SET(x)
 - Creates a new set whose only member is x
- UNION(*x*, *y*)
 - Combines the two sets containing objects x and y
- FIND-SET(x)
 - Returns the representative of the set containing object *x*
- An algorithm that performs these ops is known as a UNION-FIND algorithm

UNION-FIND Algorithm

Disjoint-Set Data Structure

- Maintains collection of non-overlapping sets of objects
- Each set identifiable by a single representative object
 - Rep. may change as set changes, but remains the same as long as set unchanged
- Disjoint-set forest is a type of D-S data structure with sets represented by rooted trees
 - Root of tree is representative

UNION-FIND Algorithm

HK relation to UNION-FIND

 csize array may be viewed as a disjointset forest

UNION-FIND Algorithm

HK relation to UNION-FIND

- Implementation of UNION-FIND operations
 - MAKE-SET: When a cell is given a new label and new cluster is formed
 - UNION: When two clusters are merged
 - FIND-SET: Also when two clusters are merged (must determine that the proper labels of the two clusters differ)

UNION-FIND Algorithm

Heuristics to improve UNION-FIND

- Path compression
 - Used in FIND-SET to set each node's parent link to the root/representative node
 - FIND-SET becomes two-pass method
 - 1) Follow parent path of x to find root node
 - 2) Traverse back down path and set each node's parent pointer to root node

UNION-FIND Algorithm

Heuristics to improve UNION-FIND

- Union by rank
 - Goal: When performing UNION, set root of smaller tree to point to root of larger tree
 - Size of trees not explicitly tracked; rather, a *rank* metric is maintained
 - Rank is upper bound on height of a node
 - MAKE-SET: Set rank of node to 0
 - UNION: Root with higher node becomes parent; in case of tie, choose arbitrarily and increase winner's rank by 1

UNION-FIND Algorithm

Applying these heuristics to HK

- Original HK did not use either heuristic
- Previous FSM implementation (Constantin, et al.) used only path compression
- Implementation in this study uses path compression and union by cluster size
 - U by cluster size: Similar to U by rank, but considers size of cluster represented by tree, not size of tree itself
 - Reduces the number of relabeling ops in 2nd pass

Finite State Machines

Computational model composed of:

- Set of states
 - Each state stores some form of input history
- Input alphabet (set of symbols)
 - Input is read by FSM sequentially
- State transition rules
 - Next state determined by current state and current input symbol
 - Need rule for every state/input combination

Finite State Machines

Formal definition: (S, Σ , δ , q_0 , F)

- S: Set of states
- Σ: Input alphabet
 - Input is read by FSM sequentially
- δ : State transition rules
 - (δ : $S \times \Sigma \rightarrow S$)
- q₀: Starting state
- F: Set of final states

Nearest-8 HK with FSM

Why apply FSM to Nearest-8 HK?

- Want to retain short-term knowledge on still relevant, previously examined cells
 - Helps avoid costly memory accesses
- Recall from Nearest-8 HK that the W, NW, N, NE neighbors' values are checked when examining each cell
 - (only when the current cell is nonzero!)

Nearest-8 HK with FSM

- Note that a cell and its N, NE neighbors are next cell's W, NW, N neighbors
- Encapsulate what is known about current cell and N, NE neighbors into next state
 - Number of neighbor comparisons can be reduced by up to 75%

Nearest-8 HK with FSM

Let's define our state space...

- Current cell value is *always* checked, thus always encapsulated in the next state
- Assume current cell value is nonzero
 - N, NE neighbor values are checked (along with NW, but that's irrelevant for next cell)
 - This produces four possible states when examining the next cell:

Nearest-8 HK with FSM

So, after a single zero value...

- We can still retain knowledge of NW neighbor
- This produces two more states:

Nearest-8 HK with FSM

And if current cell is zero?

- Neighbor values are not checked
 - But some neighbor knowledge may still be retained. Consider:

Nearest-8 HK with FSM

Nearest-8 HK with FSM

Putting it all together...

Nearest-8 HK with FSM

Details...

- Previous slide is missing a final state
 - In formal definition, a terminal symbol is specified, to be located after last cell
 - From any state, encountering this symbol leads to final state
 - Implementation does not include final state explicitly
 - Bounds checking used instead

Nearest-8 HK with FSM

More details...

- Row transitions
 - If matrix is padded on both sides with buffer columns of all zeros, FSM will reset to s_o before proceeding to next row
 - In actual implementation, no buffer columns
 - Again, explicit bounds checking performed
 - At beginning of row, FSM reset to $s_{\!_6}$
 - At end of row, last cell handled as special case

Nearest-8 HK with FSM

In action...

1	0	2	0	0	3	3	0	1	
	-		-	-	_	-	-	2	
-1	0	-1	0	-1	-1	0	-1	3	
								4	Γ

• Start with first row clustered as before

Nearest-8 HK with FSM

In action...

Nearest-8 HK with FSM

Alternative Implementations

- Concurrent FSMs
 - Identify multiple target classes in single pass
 - Each FSM maintains separate state
 - No longer in-place
 - Must maintain explicit state variables, rather than separate blocks of execution and implicit state

Nearest-8 HK with FSM

Alternative Implementations

- Parallel computing
 - MPI used for process communication
 - Controller/worker design, round-robin job assignment
 - Matrix divided row-wise into s segments
 - csize also divided into s segments, with mutually exclusive cluster ID spaces
 - Results merged by controller node
 - Minimal speedup, mostly due to staggered I/O
 - May be useful for much larger data than used here

Workstation Performance

Methodology

- Tests performed on Linux workstation
 - 2.4 GHz Intel Xeon
 - 8 KB L1 cache
 - 512 KB L2 cache
- Timed over complete cluster analysis
 - First AND second pass (relabeling)
 - File I/O and data structure initialization not included
- Average time of 40 executions for each implementation and parameter set

Workstation Performance

Test Data

- One set of 5000x5000 randomly generated binary matrices
 - Target class densities: { 0.05, 0.1, 0.15, ..., 0.95 }
- Three actual land cover maps
 - 2771x2814 Fort Benning, 15 classes
 - 4300x9891 Tennessee Valley, 21 classes
 - 400x500 Yellowstone, 6 classes

Workstation Performance

Random Data Results

Workstation Performance

Random Data Results

Workstation Performance

Random Data Results

Palm PDA Performance

Why a PDA?

- Perhaps FSM can shine in high-latency memory system
- Conceivable applications include...
 - Mobile computing for field researchers
 - Cluster analysis in low-powered embedded systems

Palm PDA Performance

Test Data

- One set of 150x150 randomly generated binary matrices
 - Target class densities: { 0.05, 0.1, 0.15, ..., 0.95 }
- 175x175 segment of Fort Benning map
 - 13 target classes

Palm PDA Performance

Methodology

- Tests performed on Palm IIIxe
 - 16 MHz Motorola Dragonball 68328EZ
 - 8MB RAM
 - No cache
- Only one run per implementation and parameter set
 - Single-threaded execution gives very little variation in run times (within 1/100 second observed)
- Very small datasets

Palm PDA Performance

Random Data Results

