Objective

A Finite State Machine Approach
to Cluster Identification Using the
Hoshen-Kopelman Algorithm

Matthew Aldridge

Cluster Identification
« Want to find and identify homogeneous
patches in a 2D matrix, where:

 Cluster membership defined by adjacency
* No need for distance function
» Sequential cluster IDs not necessary

« Common task in analysis
of geospatial data
(landscape maps)
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Hoshen-Kopelman Algorithm

Overview

» Assigns unique IDs to homogeneous
regions in a lattice

» Handles only one target class at a time

« Lattice preprocessing needed to filter out
unwanted classes

» Single-pass cluster identification

» Second pass to relabel temporary IDs, but
not strictly necessary

» 2-D lattice represented as matrix herein

Data structures

* Matrix

» Preprocessed to replace target class with -1,
everything else with O

 Cluster ID/size array (“csize”)
* Indexing begins at 1
* Index represents cluster ID

» Positive values indicate cluster size
* Proper cluster label

» Negative values provide ID redirection
» Temporary cluster label
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csize array

* + values: cluster size

)

* Cluster 2 has 8 members
- values: ID redirection
» Cluster 4 is the same as
cluster 1, same as cluster 3
* Cluster 4/1/3 has 5 members

* Redirection allowed for
noncircular, recursive path
for finite number of steps
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Clustering procedure

* Matrix traversed row-wise

* |f current cell nonzero

» Search for nonzero (target class) neighbors
* If no nonzero neighbors found ...

* Give cell new label
» Else ...

* Find proper labels K of nonzero neighbor cells

» min(K) is the new proper label for current cell
and nonzero neighbors
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Nearest-Four Neighborhood
* North/East/West/South neighbors

» Used in classic HK implementations

» Of the four neighbors, only N/W have
been previously labeled at any given time
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Nearest-4 HK in action...
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» Matrix has been preprocessed

» Target class value(s) replaced with -1, all
others with 0
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Nearest-4 HK in action...
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Nearest-4 HK in action...
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Nearest-4 HK in action...
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Nearest-4 HK in action...
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Nearest-4 HK in action...
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Nearest-4 HK in action...
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Nearest-4 HK in action...
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Nearest-4 HK in action...
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Nearest-4 HK in action...
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» Skipping ahead

Nearest-4 HK in action...
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» Optional second pass to relabel cells to
their proper labels
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Nearest-Eight Neighborhood
* NW, N, NE, E, SE, S, SW, W

* When examining a cell, compare to W,
NW, N, NE neighbors

Nearest-Eight Neighborhood

* Sometimes more appropriate in
landscape analysis

» Rasterization can segment continuous
features if only using nearest-four
neighborhood
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Nearest-4 vs. Nearest-8 Results

- UNION-FIND Algorithm

Disjoint-Set Data Structure

» Maintains collection of non-overlapping
sets of objects

» Each set identifiable by a single
representative object

* Rep. may change as set changes, but
remains the same as long as set unchanged

» Disjoint-set forest is a type of D-S data
structure with sets represented by rooted
trees

* Root of tree is representative

- UNION-FIND Algorithm

Disjoint-Set Data Structure Operations
« MAKE-SET(x)
» Creates a new set whose only member is X
* UNION(X, y)

» Combines the two sets containing objects x
andy

« FIND-SET(x)

* Returns the representative of the set
containing object x

» An algorithm that performs these ops is
known as a UNION-FIND algorithm

- UNION-FIND Algorithm

HK relation to UNION-FIND

 csize array may be viewed as a disjoint-
set forest

L) (2)(5)(6) (7)(8) 11
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HK relation to UNION-FIND

* Implementation of UNION-FIND
operations

* MAKE-SET: When a cell is given a new
label and new cluster is formed

* UNION: When two clusters are merged

» FIND-SET: Also when two clusters are
merged (must determine that the proper
labels of the two clusters differ)

Heuristics to improve UNION-FIND

» Path compression
» Used in FIND-SET to set each node's parent
link to the root/representative node

» FIND-SET becomes two-pass method

1) Follow parent path of x to find root node

2) Traverse back down path and set each node's
parent pointer to root node

UNION-FIND Algorithm

UNION-FIND Algorithm

Heuristics to improve UNION-FIND

* Union by rank

» Goal: When performing UNION, set root of
smaller tree to point to root of larger tree

» Size of trees not explicitly tracked; rather, a
rank metric is maintained

* Rank is upper bound on height of a node
« MAKE-SET: Set rank of node to 0

* UNION: Root with higher node becomes
parent; in case of tie, choose arbitrarily and
increase winner's rank by 1

Applying these heuristics to HK
 Original HK did not use either heuristic

* Previous FSM implementation
(Constantin, et al.) used only path
compression

* Implementation in this study uses path
compression and union by cluster size
» U by cluster size: Similar to U by rank, but

considers size of cluster represented by tree,
not size of tree itself

 Reduces the number of relabeling ops in 2™ pass
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Finite State Machines

Computational model composed of:

» Set of states

» Each state stores some form of input history
* Input alphabet (set of symbols)

* Input is read by FSM sequentially
« State transition rules

» Next state determined by current state and
current input symbol

* Need rule for every state/input combination

Formal definition: (S, Z, 8, q,, F)
» S: Set of states

> Input alphabet

* Input is read by FSM sequentially
O: State transition rules

* (0:Sx2—YS)

q,- Starting state

F: Set of final states

Nearest-8 HK with FSM

Nearest-8 HK with FSM

Why apply FSM to Nearest-8 HK?

» Want to retain short-term knowledge on
still relevant, previously examined cells

» Helps avoid costly memory accesses

* Recall from Nearest-8 HK that the W,
NW, N, NE neighbors' values are
checked when examining each cell

 (only when the current cell is nonzero!)

* Note that a cell and its N, NE neighbors
are next cell's W, NW, N neighbors

» Encapsulate what is known about current
cell and N, NE neighbors into next state

* Number of neighbor comparisons can be
reduced by up to 75%

NW N NE NW [ N NE

SW | S SE SW | S SE
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Let's define our state space...

» Current cell value is always checked, thus
always encapsulated in the next state

* Assume current cell value is nonzero

* N, NE neighbor values are checked (along
with NW, but that's irrelevant for next cell)

 This produces four possible states when
examining the next cell:

= cluster (nonzero)
= no cluster (zero)
\ \

- Nearest-8 HK with FSM

And if current cell is zero?

* Neighbor values are not checked
» But some neighbor knowledge may still be

retained. Consider:
| |
- i - H
Even though previous

Current cell zero, NO
neighbors checked cell was zero, we can
retain knowledge of

= cluster (nonzero) NW neighbor
= no cluster (zero)

= unknown value

= known value (zero or nonzero)

Current cell nonzero,
neighbors checked

- Nearest-8 HK with FSM

So, after a single zero value...

» We can still retain knowledge of NW
neighbor

» This produces two more states:

? ? = cluster
o o = no cluster
| | = unknown

Nearest-8 HK with FSM

What about multiple sequential zeros?

- -

Current cell zero, NO Current cell zero, NO
neighbors checked neighbors checked

Current cell nonzero,
neighbors checked

» This produces one last I
state: B

Here we do NOT know
the NW neighbor value
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Putting it all together...

s0O — sl
?,
sb —

— = current
?
= cluster
s6 —
= no cluster
— = unknown

s4

- Nearest-8 HK with FSM

Details...

» Previous slide is missing a final state
* In formal definition, a terminal symbol is
specified, to be located after last cell

* From any state, encountering this symbol leads to
final state

» Implementation does not include final state
explicitly
* Bounds checking used instead

- Nearest-8 HK with FSM

More detalils...

* Row transitions

« If matrix is padded on both sides with buffer
columns of all zeros, FSM will reset to s,
before proceeding to next row

* In actual implementation, no buffer columns

* Again, explicit bounds checking performed
» At beginning of row, FSM reset to s,

» At end of row, last cell handled as special case

s0O — s6 —

- Nearest-8 HK with FSM

In action...
1/0/2/0/0/3|3]|0 1)1 ]
2|1
1]/ofl1lo0l1]1]0]1 3|2
alo]

» Start with first row clustered as before
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In action...
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= current

= cluster

= no cluster
= unknown

In action...
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?
sb
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= current

= cluster

= no cluster
= unknown
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In action...

L
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= current

= cluster

= no cluster
= unknown

In action...

2] 0]

= current

= cluster

= no cluster
= unknown
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In action...
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= current
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= no cluster
= unknown
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In action...

Hk
0

s4

-
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= current

= cluster

= no cluster
= unknown
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In action...

0] 3]
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= current

= cluster

= no cluster
= unknown
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In action...

= current

= cluster

= no cluster
= unknown
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In action... In action...
1] 2] 1] 2]
2 1] 2| 1]
3|3 34
40| 40|

Hk
0

= current

= cluster

= no cluster
= unknown

= current

= cluster

= no cluster
= unknown
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In action... In action...
1] 2] 1] 2]
2 1] 2 1]
3|4 3|4
40| 4lo]

- H%H

"

-

= current ps = current

= cluster . | = cluster

= no cluster . = no cluster
= unknown — = unknown
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In action...

AW N P

current

cluster

no cluster
= unknown

- Nearest-8 HK with FSM

Alternative Implementations

 Parallel computing

* MPI used for process communication

 Controller/worker design, round-robin job
assignment

* Matrix divided row-wise into s segments

* csize also divided into s segments, with
mutually exclusive cluster ID spaces

» Results merged by controller node
» Minimal speedup, mostly due to staggered 1/O
» May be useful for much larger data than used here

- Nearest-8 HK with FSM

Alternative Implementations

» Concurrent FSMs
* Identify multiple target classes in single pass
« Each FSM maintains separate state
 No longer in-place

» Must maintain explicit state variables, rather than
separate blocks of execution and implicit state

- Workstation Performance

Methodology

» Tests performed on Linux workstation
» 2.4 GHz Intel Xeon
* 8 KB L1 cache
* 512 KB L2 cache

» Timed over complete cluster analysis

* First AND second pass (relabeling)

 File /0 and data structure initialization not
included

 Average time of 40 executions for each
implementation and parameter set
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Test Data

* One set of 5000x5000 randomly generated
binary matrices
 Target class densities: { 0.05, 0.1, 0.15, ..., 0.95 }
» Three actual land cover maps
» 2771x2814 Fort Benning, 15 classes
» 4300x9891 Tennessee Valley, 21 classes
» 400x500 Yellowstone, 6 classes

- Workstation Performance
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Random Data Results
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Random Data Results
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Random Data Results
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Fort Benning Data

- Workstation Performance

Fort Benning Data Results
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Fort Benning Data Results
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Fort Benning Data Results
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Fort Benning Data Results

- Workstation Performance - Workstation Performance
Tennessee Valley Data Tennessee Valley Data Results

Target class density (%}
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Tennessee Valley Data Results
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Yellowstone Data
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Yellowstone Data Results
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Conclusions
» FSM clearly outperforms non-FSM for both
landscape and random data

 Sparse clusters: non-FSM still competitive

 Dense clusters: FSM advantage increases due to
retaining knowledge of neighbor values more often
 Proper merging (using union by cluster size) is
key to performance
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Why a PDA?

* Perhaps FSM can shine in high-latency
memory system
» Conceivable applications include...
 Mobile computing for field researchers

» Cluster analysis in low-powered embedded
systems

- Palm PDA Performance

Methodology

 Tests performed on Palm llIxe
» 16 MHz Motorola Dragonball 68328EZ
« 8MB RAM
* No cache

* Only one run per implementation and
parameter set

« Single-threaded execution gives very little
variation in run times (within 1/100 second
observed)

 Very small datasets

- Palm PDA Performance

Test Data

* One set of 150x150 randomly generated
binary matrices

» 175x175 segment of Fort Benning map
« 13 target classes

 Target class densities: { 0.05, 0.1, 0.15, ..., 0.95 }

- Palm PDA Performance

Random Data Results
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Fort Benning Data Results

Cells process

5000

Target class density (%)
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Branching in FSM vs. Non-FSM

A@AA AN

non-FSM FSM
(dashed lines indicate
state-based branching)
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Conclusions

* Non-FSM implementation faster in all cases

* FSM more competitive with higher target class
densities

* Why is the FSM slower?

* Ironically, lack of cache

* Also, reduced program locality and execution
branching

 Adding as little as 1-2 KB of cache can reduce
Palm's effective memory access time by 50%
(Carroll, et al.)

- In Closing

Possible Future Work

 Extension to three (or higher?) dimensions
« Higher dimensions => more neighbors => many
more states

» Automated FSM construction would ease burden, allow
non-programmers to define custom neighborhood rules

« If effects of complex control logic/branching can
be mitigated, then FSM savings should be great

» FSM adaptation for different data ordering
(e.g. Z- or Morton-order)

 Implement FSM HK in hardware (FPGAs, etc.)




