
A FINITE STATE MACHINE APPROACH TO
CLUSTER IDENTIFICATION USING THE

HOSHEN-KOPELMAN ALGORITHM

A Dissertation
Presented for the

Doctor of Philosophy
Degree

The University of Tennessee, Knoxville

Matthew Lee Aldridge
May 2008

Acknowledgments

I would like to thank all those who have supported and believed in me over

these past twenty-two years of my education: family, friends, teachers and

professors. In particular, special thanks go to my parents David and Debbie

Aldridge; I surely wouldn't be here without you, in so many ways! I am very

grateful to have had Dr. Michael Berry as my advisor throughout graduate school,

for the opportunities he has pointed me toward, and for his help in keeping me

focused on my goals. I also kindly thank Dr. Brad Vander Zanden, Dr. Lynne

Parker and Dr. Shih-Lung Shaw for serving on my committee, and Dr. Gregory

Peterson for his assistance with the Palm PDA testbed.

Lastly, I would like to graciously acknowledge that I have received much of

my graduate school funding through a subcontract from Oak Ridge National

Laboratory as part of the RSim Project (SERPD SI-1259) of the Strategic

Environmental Research and Development Program (SERDP) supported by the

United States Departments of Defense and Energy and the Environmental

Protection Agency, and the Yates Dissertation Fellowship at the University of

Tennessee.

ii

Abstract

The purpose of this study was to develop an efficient finite state machine

implementation of the eponymous Hoshen-Kopelman cluster identification

algorithm using the nearest-eight neighborhood rule suitable to applications such

as computer modeling for landscape ecology. The implementation presented in

this study was tested using both actual land cover maps, as well as randomly

generated data similar to those in the original presentation of the Hoshen-

Kopelman algorithm for percolation analysis. The finite state machine

implementation clearly outperformed a straightforward adaptation of the original

Hoshen-Kopelman algorithm on either data type. Research was also conducted to

explore the finite state machine's performance on a Palm mobile computing

device, and while it was competitive, it did not exceed the performance of the

straightforward Hoshen-Kopelman implementation. However, a discussion of

why this was the case is provided along with a possible remedy for future

hardware designs.

iii

TABLE OF CONTENTS

1. INTRODUCTION..1

2. HOSHEN-KOPELMAN ALGORITHM BACKGROUND............ 6
2.1 Original HK Algorithm..6
2.2 HK Example...8
2.3 Nearest-Four FSM... 9

3. NEAREST-EIGHT FSM...13
3.1 State Definitions...14
3.2 Relation to UNION-FIND Algorithm..17
3.3 Alternative Implementations..21

4. WORKSTATION PERFORMANCE..23
4.1 Methodology.. 23
4.2 Test Data.. 25
4.3 FSM and non-FSM Performance Comparisons...................................26
4.4 Lazy and Proper Merge Performance Comparisons............................ 30

5. PALM DEVICE PERFORMANCE...32
5.1 Methodology.. 32
5.2 Test Data.. 34
5.3 FSM and non-FSM Performance Comparisons...................................34
5.4 Further FSM Performance Analysis.. 35

6. CONCLUSION.. 39

BIBLIOGRAPHY.. 41

APPENDIX...44

VITA..75

iv

LIST OF TABLES

2-1. States Defined by Nearest-Four FSM...49
4-1. Target Classes, Densities, and Number of Clusters in Fort
 Benning Landscape Map..54
4-2. Target Classes, Densities, and Number of Clusters in Tennessee
 Valley Landscape Map.. 54
4-3. Target Classes, Densities, and Number of Clusters in Yellowstone
 Landscape Map.. 54
5-1. Target Classes, Densities, and Number of Clusters in Fort
 Benning Landscape Map Segment...68

v

LIST OF FIGURES

2-1. HK method for assigning a label to site si... 45
2-2. HK method for determining the proper label of a site sn...................46
2-3. An 8×8 binary, square lattice input for HK....................................... 47
2-4. The lattice from Figure 2-3 after HK cluster identification and the
 contents of array N after processing each row of the lattice............ 47
2-5. The lattice from Figure 2-3 after the HK algorithm and the
 optional second pass relabeling operation....................................... 48
2-6. North, east, west and south relationship to cell (i, j)......................... 48
3-1. A hypothetical landscape feature and its representation in a raster
 format...50
3-2. Cardinal and ordinal neighbor relationships to cell (i, j)...................50
3-3. Seven states in the nearest-eight FSM...51
3-4. An example situation where partial neighbor information can be
 retained using state s5...51
3-5. Formal FSM definition of nearest-eight FSM................................... 52
3-6. A csize array and its representation as a disjoint-set forest...............53
4-1. Two 5000×5000 binary matrices with densities d=0.25 and d=0.7.. 53
4-2. A 2771×2814 landscape map of a five county region surrounding
 Fort Benning, GA...55
4-3. A 4300×9891 landscape map centered on the Tennessee Valley
 and southern Appalachian Mountains..56
4-4. A 400×500 landscape map covering a portion of Yellowstone
 National Park... 56
4-5. Performance of FSM and non-FSM implementations on
 randomly generated 5000×5000 matrices..57
4-6. Merge checks and actual merge operations on randomly
 generated 5000×5000 matrices.. 58
4-7. Second-pass relabeling operations necessitated by lazy and
 proper MERGE implementations on randomly generated
 5000×5000 matrices...59
4-8. Performance of FSM and non-FSM implementations on target
 classes in 2771×2814 Fort Benning map...60
4-9. Performance of FSM and non-FSM implementations on target
 classes in 4300×9891 Tennessee Valley map..................................61
4-10. Merge checks and actual merge operations on target classes in
 4300×9891 Tennessee Valley map.. 62
4-11. Performance of FSM and non-FSM implementations on target
 classes in 400×500 Yellowstone map.. 63
4-12. The 4300×9891 Tennessee Valley landscape map with class 19

vi

 (d=0.19180), class 1 (d=0.22324), and class 17 (d=0.23531)
 visible from top to bottom..64
4-13. Performance of lazy and proper MERGE implementations using
 a FSM on randomly generated 5000×5000 matrices....................... 65
4-14. Performance of lazy and proper MERGE implementations using
 a FSM on target classes in 4300×9891 Tennessee Valley map....... 66
4-15. Second-pass relabeling operations necessitated by lazy and
 proper MERGE implementations on target classes in
 4300×9891 Tennessee Valley map.. 67
5-1. A 175×175 segment of Fort Benning landscape map....................... 68
5-2. Performance of FSM and non-FSM implementations on randomly
 generated 150×150 matrices.. 69
5-3. Performance of FSM and non-FSM implementations on 175×175
 Fort Benning map segment.. 70
5-4. C code segment to demonstrate effect of performance degradation
 caused by code branching.. 71
5-5. Loop from Figure 5-3 compiled without optimizations.................... 72
5-6. Loop from Figure 5-3 compiled with optimizations......................... 73
5-7. Branches in non-FSM and FSM code for each cell processed.......... 74

vii

1 Introduction
It is often desirable in the analysis of various types of datasets to identify

distinct subsets based upon some common traits, a process known as cluster

identification or simply clustering. Often cluster identification is performed using

some type of distance metric, which defines the similarity between two data

elements. With spatial data, the distance metric used is often simple Euclidean

distance, but this is not universal. A subclass of cluster identification techniques

considers pure connectivity among cluster components rather than some measure

of similarity. In the application of these techniques, the data are typically

represented as a lattice, with each data point connected to some number of

neighbors according to the lattice structure being used. As cluster formation is

driven by adjacency, each point in a cluster can be reached from any other point

in the cluster by traversing the lattice connections in an uninterrupted fashion.

Methods for identifying such cluster structures can generally be classified as

recursive or iterative.

The recursive, or depth-first, approach has its roots in the works of [16] and

[10]. This method makes a single pass over the lattice. When a cluster site—

meaning a site that needs to be assigned a cluster label—is encountered, the

algorithm then examines each connected, or neighbor, site for other cluster sites

that have not yet been assigned a label. This process is repeated recursively for all

1

such neighbor cluster sites until every site in the entire cluster structure has been

assigned the appropriate cluster label. At this point the algorithm continues its

pass along the lattice until it encounters the next unlabeled cluster site. While this

method can be used to identify all clusters within a lattice, it has the added benefit

of allowing for the identification of a single cluster without examining the entire

lattice, so long as at least one site of the cluster is known. This selective cluster

labeling process is useful in such domains as image processing, where it is better

known as connected component extraction [7]. Another advantage of the

recursive technique is that it is not necessary to maintain an additional data

structure for managing the cluster labels. However, in practical terms this method

can be limited by the need to store the entire lattice in memory to overcome its

poor locality of reference and, even more importantly, the amount of stack space

required for the number of recursive function calls for large clusters. The stack

space requirements for a purely recursive method have been shown to grow

unreasonably large as the lattice size grows [12].

The second general class of adjacency-based cluster identification algorithms

is the iterative type. The work of [14] is generally regarded as the first instance of

an iterative adjacency-based cluster identification algorithm. This method labels

all clusters in a lattice through forward propagation. The lattice is traversed row-

wise, and a cluster site is assigned the label belonging to any previously labeled

neighboring cluster site. Because this method does not label an entire cluster at

2

once like the recursive method, an additional data structure must be maintained to

keep track of the cases where multiple previously disjoint clusters are discovered

to be the same cluster as the lattice continues to be traversed. In these cases, a

single cluster will have multiple labels associated with it, and the additional data

structure essentially maintains a table of equivalence classes that can be used to

assign each cluster a single unified label in a second pass of the lattice.

The Hoshen-Kopelman (HK) algorithm (presented in further detail in Part 2)

can be viewed as a variation on this iterative method [9]. The main advantage of

HK over the method in [14] is its use of the efficient UNION-FIND algorithm to

maintain the set of cluster label equivalence classes [17]. Additionally, HK (or

any iterative method) exhibits much better spatial and sequential locality than

recursive methods, no longer forcing the entire lattice to be present in memory at

once. Originally developed for use in percolation analysis, HK remains a standard

in that field [13], [15].

Given the adjacency-based nature of cluster membership in the HK

algorithm, it is quite suitable for identifying homogeneous regions in landscape

raster maps within the field of landscape ecology [2]. The HK algorithm has

previously been implemented using a finite state machine (FSM) to improve upon

its performance, but that implementation is limited to a neighborhood rule in

which only the four cardinal neighbors are considered to be connected to a point

in the map [4]. Due to artifacts introduced by the process of rasterizing a

3

landscape map, it is often desirable to consider a point in a map to be connected to

its nearest eight neighbors [11]. Thus forms the motivation for developing an

efficient finite state machine HK implementation using the nearest-eight

neighborhood rule, as described in Part 3. Additionally, Part 3 contains a

discussion of the relation between HK and the UNION-FIND algorithm, as well

as how the UNION operation can be adapted to consider cluster size in order to

boost the overall performance of an implementation of the HK algorithm.

Part 4 presents performance evaluations of this FSM HK implementation on

a workstation. The performance of the FSM is compared to that of a straight-

forward implementation of the HK algorithm, and the effects of implementing the

UNION operation based on cluster size operation are explored. Two basic data

types are used in these performance evaluations: randomly generated lattices,

similar to what one might expect in Monte Carlo simulations for percolation

analysis [15]; and landscape maps of varying sizes. In fact, early versions of this

implementation have already proved useful in two applications involving

landscape map analysis [6], [8].

Another application proposed in this study is cluster analysis using limited

capability computational devices like Palm personal digital assistants. One such

hypothetical application may involve a field researcher who wishes to perform

cluster analysis on a map of the surrounding area, without access to a more

powerful computer. While the Palm testbed architecture used in this study (Part 5)

4

proves unsuitable for this implementation, the underlying cause for the problem is

explored and a potential solution is proposed.

5

2 Hoshen-Kopelman Algorithm Background
This part includes a discussion of background information on the Hoshen-

Kopelman (HK) algorithm and previous research involving the algorithm. HK as

it was originally defined is presented first, followed by an overview of

independent research involving a finite state machine implementation.

2.1 Original HK Algorithm

The Hoshen-Kopelman algorithm is a single-pass, aggregate-type cluster

identification algorithm [9]. Unlike many other cluster identification algorithms,

HK does not utilize a distance or similarity metric in determining cluster

assignments. Rather, as HK was originally developed for use in percolation

analysis, cluster membership is defined by adjacency.

The clustering space considered by HK is defined using a lattice structure.

While the example presented in the next section uses a square lattice, the HK

algorithm can be applied to other lattice structures such as triangular lattices,

double-triangular lattices, and so forth. The sites within the lattice are binary

valued, referred to here as either type A or B, with type A sites being targeted for

clustering. Each A site is assigned a cluster label from a set of natural numbers,

while B sites are always labeled with zeros. A single cluster of A sites may be

identified by multiple labels. Such multiple label instances occur upon the

6

discovery of a pathway linking two previously disjoint clusters. When a cluster is

identified by multiple labels, the smallest of those labels is regarded as the proper

label. While the proper labels for coalesced or merged clusters may change, the

labels already assigned to sites within previously disjoint clusters remain

unchanged. To track labels and cluster merges a separate list N is maintained,

which records the links among all clusters and their proper labels. Using this

technique allows for a single-pass approach, however it is possible, if desired, to

perform a second pass through the lattice to reassign each site its proper label.

This is useful if one wishes to save the cluster identification results without also

saving N. Also note that this algorithm can be performed in-place, overwriting the

source data in the lattice with the resulting cluster labels.

The pseudo-code for assigning a label to a site si using HK is given in Figure

2-1 (all figures are located in the appendix). HK can traverse the lattice either

row-wise or column-wise (for a two-dimensional lattice structure). When a site of

type B is encountered, it is assigned a value of 0. When a site of type A is

encountered, previously labeled sites within the neighborhood of si are searched.

The neighborhood of si consists of all its neighbors, or adjacent sites as defined by

the lattice structure. If there are no A neighbors found, si is assigned the smallest

unused label, determined by the label counter k and increment Δk (the increment

is usually defined as 1). If A neighbors are found, N is referenced to determine

those neighbors' proper labels. In the case where all A neighbors have the same

7

proper label, indicating that those sites are already known to belong to the same

cluster, site i is assigned the same proper label. However, when multiple proper

labels are found among the A neighbors, a cluster merge operation must be

performed. The smallest proper label becomes the new label for si and the newly

coalesced cluster. The list N is also updated to reflect the new size of the

coalesced cluster and to link the larger—and no longer proper—labels among the

A neighbors to the new unifying proper label.

 The pseudo-code for determining the proper label of a neighbor site sn is

given in Figure 2-2. The temporary variables r and t are used to follow the label

reference chain in list N. When t is first assigned the value of -N(r=sn), it is

checked for a negative value. If t is negative, then the value of N(r) is positive,

indicating that sn is already assigned a proper label value. However, as long as t

remains positive, the reference chain must be followed. Once the end of the chain

is reached and the proper label is found, the entry in list N for sn is updated to

refer directly to the proper label.

2.2 HK Example

Consider the 8×8 square lattice in Figure 2-3. Each site in the lattice located

at row i and column j has neighboring sites at (i-1, j), (i, j-1), (i+1, j), and (i, j+1).

In the notation used here, row and column indexing begins at 0, and the origin is

located in the top-left corner of the lattice. A value of -1 is denotes an A site,

8

while 0 denotes a B site. After being processed by the HK algorithm, traversing

row-wise across the lattice, the resulting label assignments are shown on the left

side of Figure 2-4. The right side of Figure 2-4 shows the contents of the first nine

elements of list N.

After processing just the first row of the lattice, cluster 1 contains two sites,

cluster 2 one site, and cluster 3 two sites. The third row exhibits the first instance

of cluster coalescence. When the site at (2, 1) is first encountered, neither of the

two previously examined sites at (i-1, j) and (i, j-1) belong to A, and the site is

therefore assigned a label of 5. However, the subsequent site at (2, 2) has two A

neighbors: (1, 2) with label 4, and (2, 1) with label 5. When clusters 4 and 5

coalesce, the smaller of the two labels becomes the new proper label, which is

reflected in N. After the row has been processed, N(5) has value -4, and N(4)

shows that cluster 4 has three member sites. Figure 2-5 shows the label-assigned

lattice following an optional second pass to assign each A site its proper cluster

label.

2.3 Nearest-Four FSM

The implementation of HK presented in [4] utilizes a finite state machine to

achieve improved performance and is the basis for the original research presented

in this paper. However, one fundamental difference between this FSM

implementation and that presented in Part 3 is the use of the nearest-four

9

neighborhood rule. This neighborhood rule is analogous to the square lattice

structure presented in Section 2.2, but henceforth we shall use a new terminology.

Whereas the original HK specification in Section 2.1 referred to lattices and sites,

the following text refers to matrices and cells. The matrix contains the data on

which cluster identification is performed, and each data element within the matrix

is a cell. For convenience, we shall refer to the nearest-four neighboring cells

using the cardinal directions north, south, east and west, as shown in Figure 2-6.

This nearest-four FSM implementation uses two data structures: matrix

and csize. Matrix is a two-dimensional integer array of size n×m, where n is

the number of rows and m is the number of columns of the matrix being analyzed.

As with the original HK algorithm, this FSM implementation expects binary-

valued input data. Prior to initiating the FSM HK algorithm, matrix is

preprocessed to filter out irrelevant data. Each matrix cell belonging to the target

class, or cell value of interest, are reassigned a value of -1. All non-target class

cells are reassigned a value of 0. As the algorithm proceeds to analyze the matrix,

those cells with a -1 value are given cluster labels as appropriate.

The second data structure, csize, is a one-dimensional integer array

analagous to the list N in the original HK definition. This array serves a dual

purpose—to track the size of clusters, along with cluster mergers as

interconnecting pathways between previously independent clusters are

10

discovered. The csize array is indexed from 1, with each value initialized to 0.

The value at index i corresponds to the cluster with label i. A positive value at

index i indicates the size (number of members) of that cluster. A negative value is

the result of cluster merging, and its absolute value is an index to the true cluster

label. Note that such redirection is not limited to a single level; negative values

may follow any non-circular, finite chain. Unlike in the original HK specification,

however, this implementation performs path compression on the csize array.

During the process of merging multiple clusters, every point in the label reference

chain of those clusters is updated to refer directly to the new proper label. This

effectively reduces the amount of indirection between a temporary label and its

proper label to a single level and is key in improving the overall performance of

the implementation.

The finite state machine in this implementation is used to encapsulate the

cluster membership status of the west neighbor (previous cell) and the northwest

neighbor (previous cell's north neighbor). The encapsulated information for each

state in the FSM is shown in Table 2-1 (all tables are located in the appendix).

When the FSM is in state s0, the west neighbor is known to have a value of 0. In

this case, a current cell value of -1 indicates that a new cluster is formed if the

north neighbor is 0, or added to the north neighbor's cluster if that neighbor is

nonzero. When in state s1, the west neighbor is known to have a nonzero value,

denoting cluster membership, while the northwest neighbor's value is 0. Here a

11

current cell with value -1 will be added to the west neighbor's cluster if the north

neighbor is 0, but when the north neighbor is nonzero, a possible merge could

take place between the north and west neighbor clusters. The reason for

encapsulating the northwest neighbor's value—even though the northwest

neighbor is not directly connected to the current cell according to the nearest-four

neighborhood rule—becomes evident with state s2. When the FSM is in this state

both the west and northwest neighbors are known to have nonzero values and

belong to the same cluster. If the current cell is -1 and the north neighbor is also

nonzero, it is now known that no cluster merge must take place, as the north and

west neighbors are connected by the northwest neighbor. Thus the current cell is

simply given the proper label for the west-northwest-north cluster, and no time is

spent determining whether a merge operation is necessary. The final two states, s3

and s4, indicate that the end of a row or the end of the matrix has been reached,

respectively.

This implementation is reported to achieve a speedup factor in the range of

1.39 to 2.00 over the implementation of HK used in [2], based upon the original

HK specifications. This is due to a combination of path compression in the csize

array, encapsulating neighbor information in a state variable, and avoiding

unnecessarily checking for potential cluster merge situations due to such

encapsulation.

12

3 Nearest-Eight FSM
The original motivation for an efficient nearest-eight neighborhood finite

state machine implementation of HK was provided by research involving a tool to

analyze landscape maps and detect potential dispersal corridors, or pathways,

among suitable habitat regions for various wildlife [8]. Habitat fragmentation is a

major focus of landscape ecology [18], and the identification of distinct habitat

clusters (or patches, in landscape ecology nomenclature) is a necessary step for

analyzing the effects of fragmentation. However, the common practice of

representing a landscape map using a raster model can introduce a certain error or

ambiguity in terms of connectivity [11]. For instance, a landscape feature that

moves diagonally across the frame of reference may have its continuity disrupted

if one considers only connectivity along cell edges in a matrix (i.e., using the

nearest-four neighborhood rule). See Figure 3-1 for an example of this

rasterization artifact. While the landscape feature in this example—say, a road or

stream—should be considered contiguous, cluster identification using the nearest-

four neighborhood rule will report six unique clusters. To overcome this problem,

we use the nearest-eight neighborhood rule, as shown in Figure 3-2.

The nearest-eight finite state machine implementation works similarly to the

nearest-four method described in Part 2, with the following exceptions. If the

current cell needs to be added to a cluster, the north and west neighbors' values

13

must be checked, along with the northeast and northwest. If any one of these

neighbors belongs to a cluster, the current cell is added to that cluster. If the north

neighbor does not belong to a cluster, but both the northeast and either the west or

northwest neighbors do, there may be a need to perform a cluster merge (similar

to west-north neighbor merges using the nearest-four neighborhood rule).

Given that the number of neighbor comparisons is effectively twice that of

the original HK method, this seems to be a prime candidate for performance gains

by using a FSM. When the cell currently under examination needs to be clustered,

four neighbors need to be checked. Note that the north and northeast neighbors of

the current cell are the northwest and north neighbors of the next cell,

respectively. If these values are known, they may be encapsulated in the next

state, reducing the number of neighbor comparisons by two if the next cell also

belongs to a cluster. Additionally, the current cell's value is always checked and

thus may be encapsulated in the next state.

3.1 State Definitions

Figure 3-3 presents the seven possible states based on known and unknown

neighbor values. State s0 represents the case when only the west neighbor's value

is known. States s1 through s4 represent the cases when the previous cell belongs

to a cluster, and therefore the values of all three of the west, northwest, and north

neighbors have been checked and are known. States s5 and s6 represent the cases

14

when the previous cell is not a part of a cluster, but the cell prior to that is. In

these cases, only the west and northwest neighbors have been checked and are

known. One such case is illustrated in Figure 3-4. Part A of Figure 3-4 shows a

matrix segment with all cell values revealed, while parts B through D show the

state and encapsulated neighbor information as the FSM processes the bottom

row. In part B, the FSM is in state s2 and both the north and northwest values are

known. As the current cell in part B belongs to the class being clustered, the

northeast neighbor's value must be checked, and this information is encapsulated

in the state for the next cell, s4. The current cell in part C does not belong to a

cluster, so the northeast neighbor's value is not checked and thus will not be

available in the state for the next cell. However, the value of the north neighbor,

also the subsequent cell's northwest neighbor, is known at this point and can

encapsulated in the next state, s5.

Figure 3-5 shows the formal definition of this FSM, but there are several

deviations from this definition in the actual implementation. Note that the final

state, s7, is not shown in Figure 3-3. While the formal definition requires an end-

of-input marker at the end of the input matrix, the implementation does not utilize

such a marker. Rather, simple bounds checking determines when the end of input

is reached. The first row of the matrix is handled as a special case, because there

are no north neighbors for that row's cells. Additionally, bounds checking is used

to determine when the end of a row is reached, and the final cell is handled as a

15

special case, due to the lack of a northeast neighbor for that cell. When the FSM

proceeds to the beginning of the next line, the state is reset to s6, which forces the

FSM to assume that the west and northwest neighbors are zeros, thus avoiding

references to those nonexistent neighbors.

It is possible, however, to implement the FSM strictly following the formal

definition. The insertion of a buffer row of zeros at the beginning of the matrix

would eliminate the necessity of treating the first row of data elements as a special

case. Also, a buffer column of zeros on both sides of the matrix would allow the

FSM to proceed from one row to the next without explicit bounds checking, as the

FSM would reset to s6 by its natural progression. However, using either approach

is ill-advised, due both to increased storage space requirements and to the

additional overhead associated with retrieving buffer elements from memory.

Maintaining the state can be done explicitly by using an integer state

variable, as is the case with the nearest-four FSM implementation from Part 2.

Alternatively, the state may be implicitly maintained by segmenting the code by

state and jumping to the appropriate code segment as the state changes, which is

the method used in this nearest-eight FSM implementation. The program is

written in C, and goto statements are used to transition from one state to

another. While such a practice can harm program locality and impair predictive

branch execution, the goto method has shown improved performance, as it

eliminates the necessity of checking and possibly setting a state variable at each

16

cell in the matrix.

3.2 Relation to UNION-FIND Algorithm

As defined in [5], a disjoint-set data structure maintains a collection of non-

overlapping sets of objects, and each set is identified by a single representative

object contained within the set. The representative may change as the set is

altered, but the representative must remain the same as long as the set is unaltered.

A disjoint-set forest is an implementation of the disjoint-set data structure that

represents sets by rooted trees. Each node in the tree contains one member and

points only to its parent node, and the root of the tree is the representative for the

set.

Three functions provide useful manipulations of a disjoint-set data structure:

MAKE-SET(x), UNION(x, y), FIND-SET(x). The MAKE-SET function creates a

new set whose only member object is x. The UNION function combines the two

sets containing objects x and y. Finally, FIND-SET returns the representative of

the set containing x. An algorithm that performs these operations on a disjoint-set

data structure is known as a UNION-FIND algorithm.

The csize array (or list N in the original HK specifications) may be viewed

as a disjoint-set forest. Each set is a cluster, and the objects contained in the sets

are cluster labels. While a cluster may contain multiple labels, only the proper

label is considered the representative. Figure 3-6 illustrates a sample csize array

17

and its graphical representation as trees. The root node of each tree is the proper

label of the represented cluster.

HK is an example of a UNION-FIND algorithm. When a cell being

examined belongs to the class being targeted for clustering and none of its

previously examined neighbors belong to a cluster, then that cell is assigned the

next unused cluster label and csize is updated to reflect the new cluster. This

satisfies the MAKE-SET requirement of a UNION-FIND algorithm. When a

linking pathway is discovered between two previously disjoint clusters, the two

must be merged. This implementation of HK performs this task in a function

called MERGE. The MERGE function first finds the proper cluster label for each

of the two clusters by following the label reference chain in csize. Then, if the

two proper labels are different—indicating that the two clusters are, in fact,

disjoint—MERGE updates csize to redirect the proper label of one cluster to

the proper label of the other. This satisfies both the UNION and FIND-SET

requirements of a UNION-FIND algorithm.

Two heuristics may be used to improve the performance of the UNION-

FIND operations on a disjoint-set forest: path compression and union by rank.

Path compression is used during the FIND-SET operation to set each node's

parent pointer directly to the root node or representative. To accomplish this, the

FIND-SET becomes a two-pass method. The first pass follows the path of parent

pointers from parameter node x to the root node, while the second pass traverses

18

back down the path to set each node's parent pointer directly to the root node. The

nearest-four FSM HK implementation from Part 2 uses path compression, as

does this nearest-eight FSM HK implementation within the MERGE function,

which includes the FIND-SET operation.

The second heuristic, union by rank, affects the UNION operation, making

the root node of the smaller of the two trees point to the root node of the larger

tree. Rather than explicitly tracking the size of each tree in a disjoint-set forest, a

separate rank value is maintained for each node. The rank is an upper bound on

the height of the node. When a singleton tree is created with MAKE-SET, the

single node begins with a rank of 0. When two trees are passed to the UNION

function, the root node with higher rank becomes the parent of the root node with

lower rank, but the rank of both root nodes remains unchanged. If the rank of both

root nodes is equal, one root node is chosen arbitrarily to become the parent node,

and its rank is incremented by 1. These tie-breaker situations are the only times

when a node's rank is changed.

None of the HK implementations considered in this study apply union by

rank. The original HK specification merges the cluster with the larger proper label

into the cluster with the smaller proper label. Similarly, the nearest-four FSM

implementation makes arbitrary decisions when merging two clusters. However,

the MERGE function in this nearest-eight FSM implementation does make

informed decisions when merging two clusters, which we shall call union by

19

cluster size. Recall that the csize array is viewed as a disjoint-set forest, and

each node of a tree is a cluster label. Each tree represents a cluster, which may

have multiple labels associated with it. While union by rank would make the tree

with more nodes—or the cluster with more labels associated with it—the parent

of the tree with fewer nodes, union by cluster size sets the new parent as the tree

whose represented cluster size is larger than the tree whose represented cluster

size is smaller. While this method may cause the runtime for a UNION operation

to perform worse than it would using union by rank, it is important to consider the

cost of relabeling cells in the matrix during the second pass relabeling phase.

Furthermore, since the csize array tracks the size of clusters as they are formed,

the need for an additional array to track node ranks is avoided. See Part 4 for

runtime comparisons between an implementation with union by cluster size and

one without.

For an example of how union by rank and union by cluster size can produce

different results, refer again to Figure 3-5. If clusters 2 and 6 were to be merged

using union by cluster size, the new proper label and root node would be 6, even

though the tree for cluster 2 is larger than that for cluster 6. Thus, only eight cells

previously belonging to cluster 2 would have to be relabeled during the second

pass. On the other hand, union by rank would merge cluster 6 into cluster 2,

requiring eleven cells previously belonging to cluster 6 to be relabeled.

20

3.3 Alternative Implementations

While all discussion of the HK algorithm to this point has involved the

identification of a single cluster type in a given pass, it is possible to implement

the algorithm in such a way as to identify multiple cluster types in a single pass.

Such an implementation comes with a few caveats, however. Regardless of

whether a finite state machine is used, identifying multiple clusters in a single

pass precludes the option of performing the cluster label assignments in-place.

When the cluster label assignments are stored in the original matrix, it becomes

impossible to determine whether a nonzero neighbor value indicates that the

neighbor belongs to the same cluster type as the current cell, because the

neighbor's original value has been overwritten. Therefore a second matrix must be

allocated to store the results so that the original cells' values may be retained.

Multiple concurrent finite state machines may used to identify clusters of

multiple types in a single pass, with each FSM maintaining a separate state. At

each cell in the matrix, every FSM must examine that cell and make its own state

transitions and action individually. The drawback to this method is that state

variables must be maintained instead of having separate blocks of execution like

the FSM implementation presented in this study. One possible method for

overcoming this hurdle is to spawn each individual FSM as a separate process or

system thread.

21

The HK algorithm may parallelized for execution in a parallel computing

environment by segmenting the data into distinct regions [1]. Each data segment

can then be clustered by the algorithm on separate processors without memory

sharing. It is important that each data segment has a unique region of available

cluster labels to ensure that no two individual data segments contain overlapping

labels. The results for these individual segments can then be sent to one master

processor, which performs cluster merging along the borders of adjacent data

segments. The overhead for such communication among processors can be great,

however, and tests have shown that the benefits of such parallelization are very

slim, if even existent. However, the benefit may be increased as the data space

becomes larger, much larger than the test data used to evaluate the FSM

implementation's performance in the next part.

22

4 Workstation Performance
An appropriate application of the FSM HK implementation may involve very

large datasets or many repetitions of cluster analysis of constantly changing data,

as is often the case in ecological or other models utilizing landscape maps. This

part presents performance tests conducted in an environment suitable to such

applications and demonstrates the clear advantage of using the FSM HK

implementation.

4.1 Methodology

The tests described here were performed on a Linux workstation with a 2.4

GHz Intel Xeon processor. The system contains 8 KB L1 data cache, 512 KB L2

cache, and no L3 cache.

The target class density metric is simply the percentage of cells within a

matrix that belong to the class being targeted for cluster identification.

Performance is evaluated as cells processed per millisecond, where cells is a

count of target and non-target class cells alike (i.e., the total size of the matrix).

The time measurements are taken as wall-clock time (as opposed to CPU time) in

order to capture the effect of delays caused by data element accesses from

memory. The processing time is measured over what is considered a complete

cluster analysis, which includes the first pass of temporary cluster ID assignments

23

and the second pass of final cluster ID relabeling. However, time taken for file I/O

and data structure initialization is not included. For the plots in this section that

display the number of cells processed per millisecond, each point is the mean of

forty observations of a particular implementation and parameter set. The error

bars in these plots represent the standard deviation.

These tests compare the FSM and non-FSM implementations of the HK

algorithm. Additionally, two separate FSM implementations are examined: one

utilizing the MERGE method discussed in Section 3.2 that makes the larger of

two merged clusters the parent, referred to below as proper merge; and a version

that arbitrarily decides which of two merged clusters becomes the parent, referred

to as lazy merge. When comparing the FSM and non-FSM implementations, both

use proper merge.

In addition to the processing rate comparison between the FSM and non-

FSM implementation, figures are provided for the number of merges and relabel

operations at each target class density level. Note that the term “merge check” in

in these figures refers to any possible merge situation, such as when the cell

currently under examination and both its northeast and west neighbors all belong

to the target class. However, only when the northeast and west neighbors in this

situation have different cluster IDs does an “actual merge” take place. Also note

that the number of merge checks and actual merges is constant among all

implementations: FSM or non-FSM, lazy merge or proper merge. The only

24

difference arises between the lazy and proper merge methods in terms of which of

the two clusters becomes the parent cluster. This in turn affects the number of

relabeling operations necessitated in the second-pass.

4.2 Test Data

Four datasets are used in the following tests. The first dataset consists of

nineteen randomly generated 5000×5000 binary-valued matrices, one for each of

d={0.05, 0.1, 0.15, ..., 0.95}, where d is the target class density. Thus, each cell in

the matrix is assigned a value of 1 with d probability and a value of 0 with (1-d)

probability. While this simple stochastic method is not guaranteed to produce a

matrix with a target class density of precisely d, all matrices used in this test fell

within 0.02% of d. Figure 4-1 shows two of the generated matrices, for d=0.25

and d=0.7.

The second dataset is a land cover raster map of five counties surrounding

Fort Benning in Georgia [6]. This is represented as a 2771×2814 matrix with

fifteen target classes. These fifteen classes, along with their densities and the

number of identifiable clusters for each are given in Table 4-1. The land cover

map also contains a sixteenth “no data” class, which defines the border surround

the five counties in question. However, as this class is simply used as padding in

the minimum bounding rectangle for the five counties area, it is not considered in

the tests below. Thus, the total of all target class densities given in Table 4-1 is

25

somewhat less than 1. This landscape map, with all fifteen target classes, is shown

in Figure 4-2.

The third dataset is a land cover raster map centered on the Tennessee Valley

and southern Appalachian Mountains, covering portions of Tennessee, Alabama,

Georgia, North Carolina, and South Carolina [8]. This 4300×9891 map contains

twenty-one classes. Unlike the Fort Benning landscape map, this map is fully

populated, without a “no data” class. Table 4-2 gives the target classes, densities,

and number of clusters. This landscape map is shown in Figure 4-3.

The fourth and final dataset is another land cover map, covering a portion of

Yellowstone National Park [8]. This 400×500 map is much smaller than all the

previous maps and contains six classes. As with the Tennessee Valley map, this

map is fully populated with target class values. Table 4-3 gives the target classes,

their densities and number of clusters, and the landscape map is shown in Figure

4-4.

4.3 FSM and non-FSM Performance Comparisons

Figure 4-5 shows the performance of both FSM and non-FSM

implementations on the randomly generated 5000×5000 matrices. The FSM

implementation exhibits a clear performance boost over the non-FSM version

across all target class density levels. The least improvement is observed for

d=0.05, with the FSM implementation performing at 128,600 cells per

26

millisecond and the non-FSM at 125,000. This is explained by the infrequency

and wide dispersion of the target class cells across the matrix. When target class

cells are fewer and farther apart, the FSM is unable to retain knowledge of

previously examined neighbors less often, and the FSM advantage is diminished.

Conversely, the FSM advantage increases as the target class density approaches

maximum. The most separation between the two implementations is observed at

d=0.95, with the FSM performing at 100,040 cells per millisecond and the non-

FSM at 69,137. With such a high target class density, the FSM is able to retain

neighbor value knowledge much of the time, thereby significantly reducing the

number of memory references.

The performance for both FSM and non-FSM implementations is worst near

0.45 target class density. This corresponds to the number of merge and relabel

operations shown in Figures 4-6 and 4-7, respectively, reaching their maximum

levels in approximately the same density range.

The FSM and non-FSM performance comparison on the 2771×2814 Fort

Benning landscape map is given in Figure 4-8. As with the randomly generated

matrices, the smallest margin of improvement is observed at the lower target class

density levels, while the largest margin is observed at the highest target class

density. At d=0.00005 (class 7), the FSM processes 135,375 cells per millisecond,

while the non-FSM is competitive at 130,395. On the other end of the spectrum,

when d=0.20648 (class 42), the FSM outperforms the non-FSM at 85,782 cells

27

per millisecond to only 73,148.

Figure 4-9 shows the performance comparison for the 4300×9891 Tennessee

Valley map. These results follow the same pattern as the with the Fort Benning

map. The smallest margin of improvement for the FSM over the non-FSM

implementation is observed at the low density levels. At d=0.00168 (class 10), the

FSM processes 135,225 cells per millisecond while the non-FSM processes

130,752. The largest margin of improvement occurs at d=0.22324 (class 1), with

the FSM implementation processing 117,196 cells per millisecond versus the non-

FSM implementation at 98,153 cells per millisecond. This target class is also

interesting in that it breaks the trend of generally monotonically decreasing

processing rates as the target class densities increase. To see why this is the case,

refer to Table 4-2 and Figure 4-10. Class 1 has only 549 clusters—three orders of

magnitude lower than either of the two target classes—19 and 17—with similar

density levels. This corresponds to the significantly lower number of merge

operations (both merge checks and actual merges) for class 1. Figure 4-11 shows

the Tennessee Valley map with only classes 19, 1, and 17 visible in succession.

The final workstation performance comparison between the FSM and non-

FSM implementations is shown in Figure 4-12, using the Yellowstone dataset.

This test case follows the same general pattern as before. The smallest margin of

improvement is once again at a small density level—d=0.00038—with the FSM

processing 132,669 cells per millisecond versus the non-FSM at 124,804.

28

Likewise, the largest margin of improvement is at d=0.36626. Here the FSM

processes 92,059 cells per millisecond while the non-FSM processes only 66,833.

As it happens, the number of merge and relabel operations on this map is constant

across all target classes.

One notable facet of the Yellowstone is that the map is very small compared

to those in the previous tests. The implementations examined here store the matrix

using 4-byte integers, resulting in just under 2 KB per row for this 500 column

matrix. Recall that the HK algorithm, using the nearest-eight neighborhood rule,

will examine at most the northwest, north, northeast and west neighbor values for

any given cell. When the matrix is stored in a row-major format, as it is here, all

possible neighbor references fall within the previous ncols+1 matrix elements,

where ncols is the number of columns in the matrix. Thus, for the Yellowstone

map it is possible, though not guaranteed, that all four relevant neighbors at any

given time are present in the 8 KB L1 cache in the testing environment used here.

Failing that, it is likely those data elements are present in the 512 KB L2 cache.

Though the cost of accessing the four relevant neighbor values is therefore

decreased substantially, the FSM nonetheless exhibits a performance boost by

encapsulating neighbor values in the state.

29

4.4 Lazy and Proper Merge Performance Comparisons

To demonstrate the significantly detrimental effect that a lazy

implementation of the MERGE method can have on the performance of HK,

some comparisons between FSM HK implementations with lazy and proper

merging are presented here, using the randomly generated matrices and the

Tennessee Valley landscape map. The relative performances of the non-HK

implementations with lazy and proper merging are quite similar and thus are not

presented here.

Figure 4-13 shows the processing rates of two implementations using lazy

and proper merge. At the lowest density, d=0.05, the implementation with lazy

merging slightly outperforms the proper merging method. This is to be expected,

as the low density of the target class means that there are relatively few second-

pass relabeling operations taking place for either implementation, as can be seen

in the previously referenced Figure 4-7. The proper merge implementation

involves a slight overhead incurred by checking the size of each cluster being

merged, and this overhead is not fully and consistently mitigated for the smallest

density target classes in any of the tests discussed here. However, as the target

class density increases the separation between two merging methods becomes

very great, corresponding to the reduced number of second-pass relabeling

operations.

30

The relative performances of lazy and proper merge on the Tennessee Valley

landscape map can be seen in Figure 4-14. As with the randomly generated

matrices, the lazy method is competitive with the proper method for very small

target class densities. In this case the lazy method never actually outperforms the

proper method, though the advantage of proper merge is often negligible. Figure

4-15 shows the number of second-pass relabeling operations necessitated by each

of the two merging methods. As the target class density increases, the separation

between the two becomes significant.

31

5 Palm Device Performance
In addition to applications that would naturally be suited to a fixed-location,

workstation computing environment, it is posited that the FSM HK

implementation could be useful in low-powered, embedded, or mobile computing

environments. One can imagine, for instance, researchers wishing to perform

cluster analysis on landscape data collected in-field via manual observations or

GPS on a lightweight computing device. While the FSM implementation does not

outperform the non-FSM implementation in the computing environment used in

the following tests, the underlying causes of its lackluster performance are

explored, and potentially suitable hardware specifications are discussed.

5.1 Methodology

The tests described in this part were performed on a Palm IIIxe personal

digital assistant. This mobile device, running Palm OS 3.5.3, contains a 16 MHz

Motorola Dragonball 68328EZ processor with 8 MB RAM and no cache.

Due to the memory structure imposed by the Palm operating system, no

single allocated data region, or chunk, may exceed approximately 64 KB. This

severely limits the size of the test data used here. While it would be possible to

segment a matrix across multiple chunks, perform cluster analysis on each

segment and then merge the results, it was decided to forgo this option to avoid

32

the overhead incurred by additional merge and relabel operations. Even with the

small datasets used here, it sometimes took as long as twenty seconds to perform

a single cluster analysis.

While the results in Part 4 were presented in terms of cells processed per

millisecond, the Palm device processing rates are reported as cells processed per

second. While Palm OS does not allow programmer access to the underlying

system clock, and the current time is only accessible at finest granularity of one

second, the OS generates “system ticks” one hundred times per second. As this is

the most precise timing method available, the time measurements used here are

based on these system ticks. While it is not guaranteed that the number of system

ticks per second is constant, extensive testing has not exposed any variation in this

rate.

While the workstation tests in Part 4 were performed forty times each to

compute the mean running time for each implementation and target class density,

each implementation on the Palm is executed exactly once for each target class in

each dataset. Due to the single-threaded nature of the Palm OS and the lack of

system or I/O interrupt handling in these HK implementations, the run time is

observed to be constant within one system tick for each implementation on any

given dataset and target class.

33

5.2 Test Data

Two datasets are used in the following tests. The first is a series of randomly

generated binary matrices, similar to those described in Section 4.2. These

matrices are 150×150, with one matrix for each of d={0.05, 0.1, 0.15, ..., 0.95}.

The second dataset is a segment from the Fort Benning landscape map

described in Section 4.2 and is shown in Figure 5-1. This 175×175 matrix has

thirteen target classes, and the densities and number of clusters of each class is

shown in Table A-4.

5.3 FSM and non-FSM Performance Comparisons

Figure 5-2 shows the performance of both FSM and non-FSM

implementations on the randomly generated 150×150 matrices. The non-FSM

implementation clearly outperforms the FSM implementation for small target

class density values. At d=0.05, the non-FSM version processes 13,975 cells per

second, while the FSM processes only 12,640 cells per second. However, as the

density level increases the non-FSM advantage is diminished. When d=0.3, the

non-FSM outperforms the FSM at 2,577 cells per second to a very close 2,508

cells per second. While this gap is similarly narrow to the tail end of the graph,

the FSM never actually reaches a point where it outperforms the non-FSM by any

amount. As an aside, the tail end of the graph never increases, as was the case

with the randomly generated matrices on the workstation in Part 4. This is an

34

artifact of the Palm OS requirement that a system call, which performs bounds-

checking, be used to write to any area of memory except for the stack or heap.

Because the memory architecture requires that our matrix be stored in a more

permanent area of memory (analogous to a hard drive or secondary storage), this

slow method must be used when assigning class membership and relabeling.

The results of the second test on the Fort Benning landscape map segment

are shown in Figure 5-3. As in the previous test, the non-FSM implementation has

a clear advantage over the FSM for small target class density values, but that

advantage wanes as the target class densities increase. At d=0.00235 (class 20),

the non-FSM processes 40,833 cells per second while the FSM processes only

31,572 cells per second. As before, there is never a point where the FSM

implementation outperforms the non-FSM.

5.4 Further FSM Performance Analysis

The reason for the lackluster performance of the FSM can be explained by

the Palm IIIxe system specifications. While the FSM might be expected to

perform better than the non-FSM by significantly reducing the number of data

element memory accesses, thereby mitigating the negative effects of a lack of

cache memory between the main RAM and CPU registers, it is ironically this very

lack of any cache that hinders the FSM. The non-FSM does indeed retrieve data

elements from memory more often, but its program code follows a much more

35

predictable path, with far fewer possible branches. This allows the CPU to pre-

fetch sequential instructions much more successfully than with the FSM code.

With no cache to store program code, the penalty for incorrectly predicting code

branches and pre-fetching the wrong instruction is much greater, because this

stalls the CPU pipeline while waiting for the correct instruction from main

memory.

This effect can be demonstrated with the example C code segment in Figure

5-4. This is a simple doubly-nested loop that accesses the one hundred element

array in the inner loop and performs a test-and-set on another variable k in the

outer loop. When this code is compiled with global compiler optimizations, the

number of code branches is significantly reduced when compared to an

unoptimized compiled version. The variables i, j, and k are specified as register

variables in order to avoid retrieving those values from the stack every time they

are referenced when not using any compiler optimizations. Furthermore, the inner

loop stops on condition j < (i/100), which prevents the compiler-optimized

version from gaining an advantage from loop unrolling.

The relevant assembly code segment resulting from compiling without

global compiler optimizations is shown in Figure 5-5, and the version produced

with global compiler optimizations is shown in Figure 5-6. Though it is certainly

unnecessary to dwell on the details of each of these figures, note that the

instructions that cause branching are in bold typeface. In the unoptimized version

36

there are eight branch points, compared to only five in the optimized version. The

optimized version executes in 2.51 seconds, while the unoptimized, branch-heavy

version executes in a whopping 9.71 seconds. The lack of locality in the

unoptimized code clearly has a negative effect on performance.

The assembly code resulting from the FSM and non-FSM implementations is

too unwieldy to present here, so refer instead to Figure 5-7. This figure shows the

code branches for each cell processed in the first pass of the HK algorithm. The

top tree represents the non-FSM implementation. The root of the tree corresponds

to the beginning of the process of examining a single cell, and each branch

corresponds to a test condition. Upon reaching a leaf node in the tree, the current

cell has been either added to a cluster or ignored (in the case of a non-target class

cell), and the next cell is examined. At this point the root node of the tree is

logically reentered. The first, single-leaf subtree represents a non-target class

value for the current cell. The remaining branches represent the various neighbor-

cell value comparisons.

The bottom tree in Figure 5-7 represents the logical branches in the FSM

implementation. The dashed branches represent state checks, but otherwise this

tree works much the same as the previous. The three-leaf subtree near the root

again represents the case when the currently examined cell belongs to a non-target

class. Upon reaching any leaf node, a state transition occurs and the next cell is

examined, logically reentering the root node of the tree.

37

While the FSM logical structure is more complex than that of the non-FSM,

the benefit of this complexity arises when the current state encapsulates more than

just the previously examined cell's value. This situation is represented graphically

in Figure 5-7 as the four two-leaf subtrees below the level of state-check

branches, corresponding to four of the seven states defined in the FSM. At low

target class density levels the added complexity is obviously detrimental, but the

overhead of the greater number of branches is mitigated when the target class

density is higher and the FSM spends increased time in the four more

knowledgeable states.

Given these facts, it is reasonable to assume that the FSM could well

outperform the non-FSM implementation in limited capacity devices, provided

that the device has an instruction cache with enough capacity—perhaps just a few

kilobytes—to overcome the ill effects of the additional code branching. Research

presented in [3] shows that a simulated Palm m515—similar to the Palm IIIxe, but

with a 33MHz Motorola Dragonball MC68VZ328 CPU—can have effective

memory access times reduced by 50% with as little as 1-2 KB of cache. However,

to date no Palm devices have been manufactured with cache memory, and no

other equivalent architecture was available at the time of this study.

38

6 Conclusion
This study has provided an efficient finite state machine implementation of

the Hoshen-Kopelman algorithm using the nearest-eight neighborhood rule. By

using states to encapsulate neighbor cell information and reduce redundant

memory accesses, along with informed UNION-FIND operations, this

implementation clearly outperforms an implementation based upon the original

HK specifications on a workstation testbed for both randomly generated and

actual landscape maps. While this FSM implementation does not outperform the

classic implementation on a Palm device, it is nonetheless competitive for all but

very sparse target class densities. Tests indicate that a potential Palm-like device

with a minimum amount of cache memory would allow this FSM implementation

to perform much more efficiently.

Possible future work in this vein remains. Just as the original HK algorithm

can be applied to three dimensional lattices, so could a FSM implementation.

However, as the number of neighbor relationships increases, so does the number

of states in a FSM adaptation. While the FSM in this study was defined with

extensive manual examination and optimization, it may be possible to create a

system that can define the FSM states for an arbitrarily defined neighborhood rule

automatically. This would open up the possibility for researchers without

programming knowledge to define custom neighborhood rules suitable to their

39

particular applications. Though this study had a particular focus on the analysis of

landscape maps, the methods presented here should be applicable for many types

of data representable in a lattice format.

40

Bibliography

41

Bibliography
[1] M.L. Aldridge. A Parallel Finite State Machine Implementation of a
Nearest-Eight Hoshen-Kopelman Adaptation for Landscape Analysis.
Proceedings of the 45th Annual ACM Southeast Regional Coneference, 391-394,
2007.

[2] M. Berry, E. Comiskey, and K. Minser. Parallel analysis of clusters in
landscape ecology. IEEE Computational Science and Engineering I, 2:24-38,
1994.

[3] H. Carroll, J.K. Flanagan, and S. Baniya. A Trace-Driven Simulator for
Palm OS Devices. Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, 157-166, 2005.

[4] J.M. Constantin, M.W. Berry, and B.T. Vander Zanden. Parallelization of
the Hoshen-Kopelman Algorithm Using a Finite State Machine. The International
Journal of Supercomputing Applications and High Performance Computing,
11(1):34-48, 1997.

[5] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms, Second Edition. MIT Press, Cambridge, 2001.

[6] V.H. Dale, M.L. Aldridge, T. Arthur, L.M. Baskaran, M.W. Berry,
M.Chang, R.A. Efroymson, C. Garten, C. Stewart, and Washington-Allen.
Bioregional Planning in Central Georgia. Futures, 38:471-489, 2006.

[7] R.C. Gonzalez and R.E. Woods. Digital Image Processing, Third Edition.
Pearson Prentice Hall, Upper Saddle River, 2008.

[8] W.W. Hargrove, F.M. Hoffman, and R.A. Efroymson. A practical map
analysis tool for detecting potential dispersal corridors. Landscape Ecology,
20(4), 2005.

[9] J. Hoshen and R. Kopelman. Percolation and cluster distribution: I. Cluster
multiple labeling technique and critical concentration algorithm. Phys. Rev. B.1,
14 (October):3438-3445, 1976.

[10] P.L. Leath. Cluster size and boundary distribution near percolation
threshold. Phys. Rev. B, 14(11):5046-5055, 1976.

42

[11] A.B. Leitão, J. Miller, J. Ahern, and K. McGarigal. Measuring Landscapes:
A Planner's Handbook. Island Press, Washington, 2006.

[12] J. Martín-Herrero. Hybrid Cluster Identification. J. Phys. A: Math. Gen.,
37:9377-9386, 2004.

[13] N.R. Moloney and G. Pruessner. Asynchronously parallelized percolation on
distributed machines. Physical Review E, 67:037701, 2003.

[14] A. Rosenfeld and J.L. Pfalz. Sequential operations in digital picture
processing. J. ACM, 13:471-494, 1966.

[15] D. Stauffer and A. Aharony. Introduction to Percolation Theory, Second
Edition. Taylor and Francis, London, 1992.

[16] R.E. Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146-160, 1972.

[17] R.E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215-225, 1975.

[18] M.A. Withers and V. Meentemeyer. Concepts of Scale in Landscape
Ecology. In J.M. Klopatek and R.H. Gardner, eds., Landscape Ecological
Analysis: Issues and Applications. Springer-Verlag, New York, 1999.

43

Appendix

44

45

Figure 2-1. HK method for assigning a label to a site si.

if si is of type B
 si = 0
else
 search previously labeled neighbor sites

 if no A neighbors found
 si = k+Δk
 N(si) = 1
 k = k+Δk
 else
 find proper labels K of neighboring A sites

 si = min(K)
 N(si) = 1

 foreach k in K
 N(si) = N(si) + N(k)
 N(k) = si

 endfor
 endif
endif

46

Figure 2-2. HK method for determining the proper label of a site sn.

r = sn

t = -N(r)
if t < 0
 return r
endif

while t > 0
 r = t
 t = -N(r)
endwhile

N(sn) = -r

return r

47

Figure 2-3. An 8×8 binary, square lattice input for HK. Here -1 denotes an
A site, and 0 a B site.

-1 -1 0 0 -1 0 -1 -1

 0 0 -1 0 -1 0 -1 -1

 0 -1 -1 0 -1 0 -1 -1

 0 -1 0 0 -1 -1 -1 0

 0 -1 -1 0 0 0 0 -1

-1 0 -1 0 -1 0 0 -1

-1 0 0 0 0 0 -1 -1

-1 0 0 0 0 0 -1 0

Figure 2-4. The lattice from Figure 2-3 after HK cluster identification (left)
and the contents of array N after processing each row of the lattice (right).

The integers 1 through 9 above N are indices for the list and also denote
cluster labels.

 1 1 0 0 2 0 3 3

 0 0 4 0 2 0 3 3

 0 5 4 0 2 0 3 3

 0 4 0 0 2 2 2 0

 0 4 4 0 0 0 0 6

 7 0 4 0 8 0 0 6

 7 0 0 0 0 0 9 6

 7 0 0 0 0 0 6 0

 1 2 3 4 5 6 7 8 9

 2 1 2 0 0 0 0 0 0

 2 2 4 1 0 0 0 0 0

 2 3 6 3 -4 0 0 0 0

 2 12 -2 4 -4 0 0 0 0

 2 12 -2 6 -4 1 0 0 0

 2 12 -2 7 -4 2 1 1 0

 2 12 -2 7 -4 4 2 1 -6

 2 12 -2 7 -4 5 3 1 -6

48

Figure 2-5. The lattice from Figure 2-3 after the HK algorithm and the
optional second pass relabeling operation.

 1 1 0 0 2 0 2 2

 0 0 4 0 2 0 2 2

 0 4 4 0 2 0 2 2

 0 4 0 0 2 2 2 0

 0 4 4 0 0 0 0 6

 7 0 4 0 8 0 0 6

 7 0 0 0 0 0 6 6

 7 0 0 0 0 0 6 0

Figure 2-6. North, east, west and south relationship to cell (i, j).

i, ji, j-1 C

N

E

S

Wi, j+1

i+1, j

i-1, j

49

Table 2-1: States Defined by Nearest-Four FSM

State Encapsulated Information
s0 Not currently in a cluster (W == 0)
s1 Currently in a cluster on current line (W != 0, NW == 0)
s2 Currently in a cluster on previous line (W != 0, NW != 0)
s3 At a map boundary
s4 Finished

50

Figure 3-1. A hypothetical landscape feature (left) and its representation
in a raster format (right).

Figure 3-2. Cardinal and ordinal neighbor relationships to cell (i, j).

i, ji, j-1 C

N

E

S

Wi, j+1

i+1, j

i-1, ji-1, j-1 i-1, j+1

i+1, j+1i+1, j-1

NW NE

SW SE

51

Figure 3-3. Seven states in the nearest-eight FSM.

s0 s1 s2

s3 s4 s5

s6

current

unknown
no cluster
cluster

Figure 3-4. An example situation where partial neighbor information can
be retained using state s5.

s2

s4

s5

A

B

C

D

current

unknown
no cluster
cluster

52

Figure 3-5. Formal FSM definition of nearest-eight FSM.

FSM =

Q =
 = Σ { C, T } U { 0, ..., max_label }

 = δ

F =

Assumptions:
 Each input symbol is composed of the current/north/northeast cell values
 C is the cell value denoting an element that should be clustered
 T is the cell value indicating the map terminal
 ! is the unary negator

(Q, Σ, δ, q0, F)

{ s0, s1, s2, s3, s4, s5, s6, s7 }

{ (s0, 0/xn/xne, s0), (s0, 0/!0/!0, s4), (s0, C/0/!0, s2),

 (s0, C/!0/0, s3), (s0, C/0/0, s1), (s1, 0/xn/xne, s6),

 (s1, C/xn/0, s1), (s1, C/xn/!0, s2), (s2, 0/xn/xne, s5),

 (s2, C/xn/0, s3), (s2, C/xn/!0, s4), (s3, 0/xn/xne, s6),

 (s3, C/xn/0, s1), (s3, C/xn/!0, s2), (s4, 0/xn/xne, s5),

 (s4, C/xn/0, s3), (s4, C/xn/!0, s4), (s5, 0/xn/xne, s0),

 (s5, C/0/!0, s2), (s5, C/!0/!0, s4), (s5, C/!0/0, s3),

 (s5, C/0/0, s1), (s6, 0/xn/xne, s0), (s6, C/0/0, s1),

 (s6, C/0/!0, s2), (s6, C/!0/0, s3), (s6, C/!0/!0, s4),

 (s
0
, T/x

n
/x

ne
, s

7
), (s

1
, T/x

n
/x

ne
, s

7
), (s

2
, T/x

n
/x

ne
, s

7
),

 (s3, T/xn/xne, s7), (s4, T/xn/xne, s7), (s5, T/xn/xne, s7),

 (s6, T/xn/xne, s7) }

q0 = { s6 }

{ s7 }

 xn, xne are the north, northeast cell values (variable)

 xn, xne Є { 0, ..., max_label }

53

Figure 4-1. Two 5000×5000 binary matrices, with densities d=0.25 (left)
and d=0.7 (right).

Figure 3-6. A csize array and its representation as a disjoint-set forest.

1

8
7
6
5
4
3
2

9

-2

-4
-6
3

11
-6
-2
-1
8

2

3

4 5

6

9

8

7

1

54

Table 4-1: Target Classes,
Densities, and Number of Clusters
in Fort Benning Landscape Map

Class Density Clusters
7 0.00005 133
73 0.00080 252
33 0.00114 105
20 0.00175 961
24 0.00617 7481
11 0.00982 4444
22 0.01128 15623
83 0.01867 7783
80 0.03261 18590
91 0.03980 28149
18 0.04047 518
43 0.04581 59850
31 0.06375 49220
41 0.15167 77996
42 0.20648 58757

Table 4-2: Target Classes,
Densities, and Number of Clusters in

Tennessee Valley Landscape Map

Class Density Clusters
2 0.00160 3248
10 0.00168 13284
8 0.00232 6462
6 0.00233 12553
4 0.00313 10358
15 0.00335 18373
18 0.00546 27199
3 0.00600 4214
16 0.00994 27164
5 0.01137 8253
7 0.01415 13960
9 0.01851 23534
12 0.02054 47455
20 0.02573 121709
13 0.03160 88377
11 0.03631 38711
14 0.05615 175768
21 0.09886 79882
19 0.19180 314362
1 0.22324 549
17 0.23531 210952

Table 4-3: Target Classes,
Densities, and Number of Clusters

in Yellowstone Landscape Map

Class Density Clusters
6 0.00038 5
1 0.00118 5
5 0.06643 104
4 0.24212 80
2 0.32365 83
3 0.36626 124

55

Figure 4-2. A 2771×2814 landscape map of a five county region
surrounding Fort Benning, GA. The map contains fifteen target classes.

56

Figure 4-3. A 4300×9891 landscape map centered on the Tennessee Valley
and southern Appalachian Mountains. The map contains twenty-one classes.

Figure 4-4. A 400×500 landscape map covering a portion of Yellowstone
National Park. The map contains six classes.

57

Figure 4-5. Performance of FSM and non-FSM implementations on randomly generated 5000×5000 matrices.

58

Figure 4-6. Merge checks and actual merge operations on randomly generated 5000×5000 matrices. Note the
logarithmic scale of the y-axis.

59

Figure 4-7. Second-pass relabeling operations necessitated by lazy and proper MERGE implementations on
randomly generated 5000×5000 matrices. Note the logarithmic scale of the y-axis.

60

Figure 4-8. Performance of FSM and non-FSM implementations on target classes in 2771×2814 Fort Benning
map.

61

Figure 4-9. Performance of FSM and non-FSM implementations on target classes in 4300×9891 Tennessee
Valley map.

62

Figure 4-10. Merge checks and actual merge operations on target classes in 4300×9891 Tennessee Valley map.

63

Figure 4-11. The 4300×9891 Tennessee Valley landscape map with class 19
(d=0.19180), class 1 (d=0.22324), and class 17 (d=0.23531) visible from top to

bottom.

64

Figure 4-12. Performance of FSM and non-FSM implementations on target classes in 400×500 Yellowstone
map.

65

Figure 4-13. Performance of lazy and proper MERGE implementations using a FSM on randomly generated
5000×5000 matrices.

66

Figure 4-14. Performance of lazy and proper MERGE implementations using a FSM on target classes in
4300×9891 Tennessee Valley map.

67

Figure 4-15. Second-pass relabeling operations necessitated by lazy and proper MERGE implementations on
target classes in 4300×9891 Tennessee Valley map.

68

Table 5-1: Target Classes, Densities,
and Number of Clusters in Fort

Benning Landscape Map Segment

Class Density Clusters
20 0.00235 48
83 0.01218 157
73 0.01398 41
91 0.01554 124
11 0.02015 53
80 0.04118 443
31 0.06015 790
41 0.08447 762
43 0.09656 725
24 0.12584 508
22 0.13812 825
42 0.18439 610
18 0.20509 21

Figure 5-1. A 175×175 segment of Fort Benning landscape map. This map
contains thirteen target classes.

69

Figure 5-2. Performance of FSM and non-FSM implementations on randomly generated 150×150 matrices.

70

Figure 5-3. Performance of FSM and non-FSM implementations on 175×175 Fort Benning map segment.

71

Figure 5-4. C code segment to demonstrate effect of performance
degradation caused by code branching.

int16 array[100];
register int16 i, j, k;

k = 1;
for (i = 0; i < 10000; i++) {
 for (j = 0; j < i/100; j++) {
 array[j] = i*2-j;
 }
 if (k == 0) k = 1;
 else k = 0;
}

72

Figure 5-5. Loop from Figure 5-3 compiled without optimizations.
Branching instructions are in bold typeface.

 move.l %d0,-22(%a6)
 moveq.l #1,%d5
 clr.w %d3
 .even
.L5:
 cmp.w #9999,%d3
 jble .L8
 bra .L6
 .even
.L8:
 clr.w %d4
 .even
.L9:
 move.w #5243,%d0
 move.w %d3,%d1
 muls.w %d0,%d1
 move.l %d1,%d0
 clr.w %d0
 swap %d0
 move.w %d0,%d1
 asr.w #3,%d1
 move.w %d3,%d2
 moveq.l #15,%d0
 asr.w %d0,%d2
 move.w %d1,%d0
 sub.w %d2,%d0
 cmp.w %d4,%d0
 jbgt .L12
 bra .L10
 .even

.L12:
 move.w %d4,%a0
 move.l %a0,%d1
 move.l %d1,%d0
 add.l %a0,%d0
 lea (-226,%a6),%a0
 move.w %d3,%d1
 move.w %d1,%d2
 add.w %d3,%d2
 move.w %d2,%d1
 sub.w %d4,%d1
 move.w %d1,(%a0,%d0.l)
.L11:
 addq.w #1,%d4
 bra .L9
 .even
.L10:
 tst.w %d5
 jbne .L13
 moveq.l #1,%d5
 bra .L7
 .even
.L13:
 clr.w %d5
.L14:
.L7:
 addq.w #1,%d3
 bra .L5
 .even

73

Figure 5-6. Loop from Figure 5-3 compiled with optimizations. Branching
instructions are in bold typeface.

 move.l %d0,%d7
 moveq.l #1,%d6
 clr.w %d3
 lea (10,%sp),%sp
 .even
.L8:
 clr.w %d2
 move.w %d3,%d0
 muls.w #5243,%d0
 clr.w %d0
 swap %d0
 move.w %d0,%d1
 asr.w #3,%d1
 move.w %d3,%d0
 moveq.l #15,%d4
 asr.w %d4,%d0
 sub.w %d0,%d1
 move.w %d3,%d4
 addq.w #1,%d4
 cmp.w %d2,%d1
 jble .L10
 lea (-200,%a6),%a1
 add.w %d3,%d3
 move.w %d1,%d0
 .even

.L12:
 move.w %d2,%a0
 add.l %a0,%a0
 move.w %d3,%d1
 sub.w %d2,%d1
 move.w %d1,(%a0,%a1.l)
 addq.w #1,%d2
 cmp.w %d2,%d0
 jbgt .L12
.L10:
 tst.w %d6
 jbne .L14
 moveq.l #1,%d6
 bra .L7
 .even
.L14:
 clr.w %d6
.L7:
 move.w %d4,%d3
 cmp.w #9999,%d3
 jble .L8

74

Figure 5-7. Branches in non-FSM (top) and FSM (bottom) code for each
cell processed.

Vita

Matthew Lee Aldridge was born in Boone, NC, on September 9, 1980, to David

and Debbie Aldridge. He was raised in Salisbury, NC, and later in Norris, TN. He

graduated from Anderson County High School in 1998 and received a B.S. in

computer science from the University of Tennessee, Knoxville, in 2002. There he

has stayed and is currently pursuing his doctorate in computer science.

75

	2.1 Original HK Algorithm
	2.2 HK Example
	2.3 Nearest-Four FSM
	3.1 State Definitions
	3.2 Relation to UNION-FIND Algorithm
	3.3 Alternative Implementations
	4.1 Methodology
	4.2 Test Data
	4.3 FSM and non-FSM Performance Comparisons
	4.4 Lazy and Proper Merge Performance Comparisons
	5.1 Methodology
	5.2 Test Data
	5.3 FSM and non-FSM Performance Comparisons
	5.4 Further FSM Performance Analysis

