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Abstract

The purpose of this study was to develop an efficient finite state machine 

implementation of the eponymous Hoshen-Kopelman cluster identification 

algorithm using the nearest-eight neighborhood rule suitable to applications such 

as computer modeling for landscape ecology. The implementation presented in 

this study was tested using both actual land cover maps, as well as randomly 

generated data similar to those in the original presentation of the Hoshen-

Kopelman algorithm for percolation analysis. The finite state machine 

implementation clearly outperformed a straightforward adaptation of the original 

Hoshen-Kopelman algorithm on either data type. Research was also conducted to 

explore the finite state machine's performance on a Palm mobile computing 

device, and while it was competitive, it did not exceed the performance of the 

straightforward Hoshen-Kopelman implementation. However, a discussion of 

why this was the case is provided along with a possible remedy for future 

hardware designs.
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1  Introduction
It is often desirable in the analysis of various types of datasets to identify 

distinct subsets based upon some common traits, a process known as cluster  

identification or simply clustering. Often cluster identification is performed using 

some type of distance metric, which defines the similarity between two data 

elements. With spatial data, the distance metric used is often simple Euclidean 

distance, but this is not universal. A subclass of cluster identification techniques 

considers pure connectivity among cluster components rather than some measure 

of similarity. In the application of these techniques, the data are typically 

represented as a lattice, with each data point connected to some number of 

neighbors according to the lattice structure being used. As cluster formation is 

driven by adjacency, each point in a cluster can be reached from any other point 

in the cluster by traversing the lattice connections in an uninterrupted fashion. 

Methods for identifying such cluster structures can generally be classified as 

recursive or iterative.

The recursive, or depth-first, approach has its roots in the works of [16] and 

[10]. This method makes a single pass over the lattice. When a cluster site—

meaning a site that needs to be assigned a cluster label—is encountered, the 

algorithm then examines each connected, or neighbor, site for other cluster sites 

that have not yet been assigned a label. This process is repeated recursively for all 
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such neighbor cluster sites until every site in the entire cluster structure has been 

assigned the appropriate cluster label. At this point the algorithm continues its 

pass along the lattice until it encounters the next unlabeled cluster site. While this 

method can be used to identify all clusters within a lattice, it has the added benefit 

of allowing for the identification of a single cluster without examining the entire 

lattice, so long as at least one site of the cluster is known. This selective cluster 

labeling process is useful in such domains as image processing, where it is better 

known as connected component extraction [7]. Another advantage of the 

recursive technique is that it is not necessary to maintain an additional data 

structure for managing the cluster labels. However, in practical terms this method 

can be limited by the need to store the entire lattice in memory to overcome its 

poor locality of reference and, even more importantly, the amount of stack space 

required for the number of recursive function calls for large clusters. The stack 

space requirements for a purely recursive method have been shown to grow 

unreasonably large as the lattice size grows [12].

The second general class of adjacency-based cluster identification algorithms 

is the iterative type. The work of [14] is generally regarded as the first instance of 

an iterative adjacency-based cluster identification algorithm. This method labels 

all clusters in a lattice through forward propagation. The lattice is traversed row-

wise, and a cluster site is assigned the label belonging to any previously labeled 

neighboring cluster site. Because this method does not label an entire cluster at 
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once like the recursive method, an additional data structure must be maintained to 

keep track of the cases where multiple previously disjoint clusters are discovered 

to be the same cluster as the lattice continues to be traversed. In these cases, a 

single cluster will have multiple labels associated with it, and the additional data 

structure essentially maintains a table of equivalence classes that can be used to 

assign each cluster a single unified label in a second pass of the lattice.

The Hoshen-Kopelman (HK) algorithm (presented in further detail in Part 2) 

can be viewed as a variation on this iterative method [9]. The main advantage of 

HK over the method in [14] is its use of the efficient UNION-FIND algorithm to 

maintain the set of cluster label equivalence classes [17]. Additionally, HK (or 

any iterative method) exhibits much better spatial and sequential locality than 

recursive methods, no longer forcing the entire lattice to be present in memory at 

once. Originally developed for use in percolation analysis, HK remains a standard 

in that field [13], [15].

Given the adjacency-based nature of cluster membership in the HK 

algorithm, it is quite suitable for identifying homogeneous regions in landscape 

raster maps within the field of landscape ecology [2]. The HK algorithm has 

previously been implemented using a finite state machine (FSM) to improve upon 

its performance, but that implementation is limited to a neighborhood rule in 

which only the four cardinal neighbors are considered to be connected to a point 

in the map [4]. Due to artifacts introduced by the process of rasterizing a 
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landscape map, it is often desirable to consider a point in a map to be connected to 

its nearest eight neighbors [11]. Thus forms the motivation for developing an 

efficient finite state machine HK implementation using the nearest-eight 

neighborhood rule, as described in Part 3. Additionally, Part 3 contains a 

discussion of the relation between HK and the UNION-FIND algorithm, as well 

as how the UNION operation can be adapted to consider cluster size in order to 

boost the overall performance of an implementation of the HK algorithm.

Part 4 presents performance evaluations of this FSM HK implementation on 

a workstation. The performance of the FSM is compared to that of a straight-

forward implementation of the HK algorithm, and the effects of implementing the 

UNION operation based on cluster size operation are explored. Two basic data 

types are used in these performance evaluations: randomly generated lattices, 

similar to what one might expect in Monte Carlo simulations for percolation 

analysis [15]; and landscape maps of varying sizes.  In fact, early versions of this 

implementation have already proved useful in two applications involving 

landscape map analysis [6], [8].

Another application proposed in this study is cluster analysis using limited 

capability computational devices like Palm personal digital assistants. One such 

hypothetical application may involve a field researcher who wishes to perform 

cluster analysis on a map of the surrounding area, without access to a more 

powerful computer. While the Palm testbed architecture used in this study (Part 5) 
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proves unsuitable for this implementation, the underlying cause for the problem is 

explored and a potential solution is proposed.
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2  Hoshen-Kopelman Algorithm Background
This part includes a discussion of background information on the Hoshen-

Kopelman (HK) algorithm and previous research involving the algorithm. HK as 

it was originally defined is presented first, followed by an overview of 

independent research involving a finite state machine implementation.

2.1  Original HK Algorithm

The Hoshen-Kopelman algorithm is a single-pass, aggregate-type cluster 

identification algorithm [9]. Unlike many other cluster identification algorithms, 

HK does not utilize a distance or similarity metric in determining cluster 

assignments. Rather, as HK was originally developed for use in percolation 

analysis, cluster membership is defined by adjacency.

The clustering space considered by HK is defined using a lattice structure. 

While the example presented in the next section uses a square lattice, the HK 

algorithm can be applied to other lattice structures such as triangular lattices, 

double-triangular lattices, and so forth. The sites within the lattice are binary 

valued, referred to here as either type A or B, with type A sites being targeted for 

clustering. Each A site is assigned a cluster label from a set of natural numbers, 

while B sites are always labeled with zeros. A single cluster of A sites may be 

identified by multiple labels. Such multiple label instances occur upon the 
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discovery of a pathway linking two previously disjoint clusters. When a cluster is 

identified by multiple labels, the smallest of those labels is regarded as the proper  

label. While the proper labels for coalesced or merged clusters may change, the 

labels already assigned to sites within previously disjoint clusters remain 

unchanged. To track labels and cluster merges a separate list N is maintained, 

which records the links among all clusters and their proper labels. Using this 

technique allows for a single-pass approach, however it is possible, if desired, to 

perform a second pass through the lattice to reassign each site its proper label. 

This is useful if one wishes to save the cluster identification results without also 

saving N. Also note that this algorithm can be performed in-place, overwriting the 

source data in the lattice with the resulting cluster labels.

The pseudo-code for assigning a label to a site si using HK is given in Figure 

2-1 (all figures are located in the appendix). HK can traverse the lattice either 

row-wise or column-wise (for a two-dimensional lattice structure). When a site of 

type B is encountered, it is assigned a value of 0. When a site of type A is 

encountered, previously labeled sites within the neighborhood of si are searched. 

The neighborhood of si consists of all its neighbors, or adjacent sites as defined by 

the lattice structure. If there are no A neighbors found, si is assigned the smallest 

unused label, determined by the label counter k and increment Δk (the increment 

is usually defined as 1). If A neighbors are found, N is referenced to determine 

those neighbors' proper labels. In the case where all A neighbors have the same 
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proper label, indicating that those sites are already known to belong to the same 

cluster, site i is assigned the same proper label. However, when multiple proper 

labels are found among the A neighbors, a cluster merge operation must be 

performed. The smallest proper label becomes the new label for si and the newly 

coalesced cluster. The list N is also updated to reflect the new size of the 

coalesced cluster and to link the larger—and no longer proper—labels among the 

A neighbors to the new unifying proper label.

 The pseudo-code for determining the proper label of a neighbor site sn  is 

given in Figure 2-2. The temporary variables r and t are used to follow the label 

reference chain in list N. When t is first assigned the value of -N(r=sn), it is 

checked for a negative value. If t is negative, then the value of N(r) is positive, 

indicating that sn is already assigned a proper label value. However, as long as t  

remains positive, the reference chain must be followed. Once the end of the chain 

is reached and the proper label is found, the entry in list N for sn is updated to 

refer directly to the proper label.

2.2  HK Example

Consider the 8×8 square lattice in Figure 2-3. Each site in the lattice located 

at row i and column j has neighboring sites at (i-1, j), (i, j-1), (i+1, j), and (i, j+1). 

In the notation used here, row and column indexing begins at 0, and the origin is 

located in the top-left corner of the lattice. A value of -1 is denotes an A site, 
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while 0 denotes a B site. After being processed by the HK algorithm, traversing 

row-wise across the lattice, the resulting label assignments are shown on the left 

side of Figure 2-4. The right side of Figure 2-4 shows the contents of the first nine 

elements of list N.

After processing just the first row of the lattice, cluster 1 contains two sites, 

cluster 2 one site, and cluster 3 two sites. The third row exhibits the first instance 

of cluster coalescence. When the site at (2, 1) is first encountered, neither of the 

two previously examined sites at (i-1, j) and (i, j-1) belong to A, and the site is 

therefore assigned a label of 5. However, the subsequent site at (2, 2) has two A 

neighbors: (1, 2) with label 4, and (2, 1) with label 5. When clusters 4 and 5 

coalesce, the smaller of the two labels becomes the new proper label, which is 

reflected in N. After the row has been processed, N(5) has value -4, and N(4) 

shows that cluster 4 has three member sites. Figure 2-5 shows the label-assigned 

lattice following an optional second pass to assign each A site its proper cluster 

label.

2.3  Nearest-Four FSM

The implementation of HK presented in [4] utilizes a finite state machine to 

achieve improved performance and is the basis for the original research presented 

in this paper. However, one fundamental difference between this FSM 

implementation and that presented in Part 3 is the use of the nearest-four 
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neighborhood rule. This neighborhood rule is analogous to the square lattice 

structure presented in Section 2.2, but henceforth we shall use a new terminology. 

Whereas the original HK specification in Section 2.1 referred to lattices and sites, 

the following text refers to matrices and cells. The matrix contains the data on 

which cluster identification is performed, and each data element within the matrix 

is a cell. For convenience, we shall refer to the nearest-four neighboring cells 

using the cardinal directions north, south, east and west, as shown in Figure 2-6.

This nearest-four FSM implementation uses two data structures: matrix 

and csize. Matrix is a two-dimensional integer array of size n×m, where n is 

the number of rows and m is the number of columns of the matrix being analyzed. 

As with the original HK algorithm, this FSM implementation expects binary-

valued input data. Prior to initiating the FSM HK algorithm, matrix is 

preprocessed to filter out irrelevant data. Each matrix cell belonging to the target 

class, or cell value of interest, are reassigned a value of -1. All non-target class 

cells are reassigned a value of 0. As the algorithm proceeds to analyze the matrix, 

those cells with a -1 value are given cluster labels as appropriate.

The second data structure, csize, is a one-dimensional integer array 

analagous to the list N in the original HK definition. This array serves a dual 

purpose—to track the size of clusters, along with cluster mergers as 

interconnecting pathways between previously independent clusters are 
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discovered. The csize array is indexed from 1, with each value initialized to 0. 

The value at index i corresponds to the cluster with label i. A positive value at 

index i indicates the size (number of members) of that cluster. A negative value is 

the result of cluster merging, and its absolute value is an index to the true cluster 

label. Note that such redirection is not limited to a single level; negative values 

may follow any non-circular, finite chain. Unlike in the original HK specification, 

however, this implementation performs path compression on the csize array. 

During the process of merging multiple clusters, every point in the label reference 

chain of those clusters is updated to refer directly to the new proper label. This 

effectively reduces the amount of indirection between a temporary label and its 

proper label to a single level and is key in improving the overall performance of 

the implementation.

The finite state machine in this implementation is used to encapsulate the 

cluster membership status of the west neighbor (previous cell) and the northwest 

neighbor (previous cell's north neighbor). The encapsulated information for each 

state in the FSM is shown in Table 2-1 (all tables are located in the appendix). 

When the FSM is in state s0, the west neighbor is known to have a value of 0. In 

this case, a current cell value of -1 indicates that a new cluster is formed if the 

north neighbor is 0, or added to the north neighbor's cluster if that neighbor is 

nonzero. When in state s1, the west neighbor is known to have a nonzero value, 

denoting cluster membership, while the northwest neighbor's value is 0. Here a 
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current cell with value -1 will be added to the west neighbor's cluster if the north 

neighbor is 0, but when the north neighbor is nonzero, a possible merge could 

take place between the north and west neighbor clusters. The reason for 

encapsulating the northwest neighbor's value—even though the northwest 

neighbor is not directly connected to the current cell according to the nearest-four 

neighborhood rule—becomes evident with state s2. When the FSM is in this state 

both the west and northwest neighbors are known to have nonzero values and 

belong to the same cluster. If the current cell is -1 and the north neighbor is also 

nonzero, it is now known that no cluster merge must take place, as the north and 

west neighbors are connected by the northwest neighbor. Thus the current cell is 

simply given the proper label for the west-northwest-north cluster, and no time is 

spent determining whether a merge operation is necessary. The final two states, s3 

and s4, indicate that the end of a row or the end of the matrix has been reached, 

respectively.

This implementation is reported to achieve a speedup factor in the range of 

1.39 to 2.00 over the implementation of HK used in [2], based upon the original 

HK specifications. This is due to a combination of path compression in the csize 

array, encapsulating neighbor information in a state variable, and avoiding 

unnecessarily checking for potential cluster merge situations due to such 

encapsulation.
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3  Nearest-Eight FSM
The original motivation for an efficient nearest-eight neighborhood finite 

state machine implementation of HK was provided by research involving a tool to 

analyze landscape maps and detect potential dispersal corridors, or pathways, 

among suitable habitat regions for various wildlife [8]. Habitat fragmentation is a 

major focus of landscape ecology [18], and the identification of distinct habitat 

clusters (or patches, in landscape ecology nomenclature) is a necessary step for 

analyzing the effects of fragmentation. However, the common practice of 

representing a landscape map using a raster model can introduce a certain error or 

ambiguity in terms of connectivity [11]. For instance, a landscape feature that 

moves diagonally across the frame of reference may have its continuity disrupted 

if one considers only connectivity along cell edges in a matrix (i.e., using the 

nearest-four neighborhood rule). See Figure 3-1 for an example of this 

rasterization artifact. While the landscape feature in this example—say, a road or 

stream—should be considered contiguous, cluster identification using the nearest-

four neighborhood rule will report six unique clusters. To overcome this problem, 

we use the nearest-eight neighborhood rule, as shown in Figure 3-2.

The nearest-eight finite state machine implementation works similarly to the 

nearest-four method described in Part 2, with the following exceptions. If the 

current cell needs to be added to a cluster, the north and west neighbors' values 
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must be checked, along with the northeast and northwest. If any one of these 

neighbors belongs to a cluster, the current cell is added to that cluster. If the north 

neighbor does not belong to a cluster, but both the northeast and either the west or 

northwest neighbors do, there may be a need to perform a cluster merge (similar 

to west-north neighbor merges using the nearest-four neighborhood rule).

Given that the number of neighbor comparisons is effectively twice that of 

the original HK method, this seems to be a prime candidate for performance gains 

by using a FSM. When the cell currently under examination needs to be clustered, 

four neighbors need to be checked. Note that the north and northeast neighbors of 

the current cell are the northwest and north neighbors of the next cell, 

respectively. If these values are known, they may be encapsulated in the next 

state, reducing the number of neighbor comparisons by two if the next cell also 

belongs to a cluster. Additionally, the current cell's value is always checked and 

thus may be encapsulated in the next state.

3.1  State Definitions

Figure 3-3 presents the seven possible states based on known and unknown 

neighbor values. State s0 represents the case when only the west neighbor's value 

is known. States s1 through s4 represent the cases when the previous cell belongs 

to a cluster, and therefore the values of all three of the west, northwest, and north 

neighbors have been checked and are known. States s5 and s6 represent the cases 
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when the previous cell is not a part of a cluster, but the cell prior to that is. In 

these cases, only the west and northwest neighbors have been checked and are 

known. One such case is illustrated in Figure 3-4. Part A of Figure 3-4 shows a 

matrix segment with all cell values revealed, while parts B through D show the 

state and encapsulated neighbor information as the FSM processes the bottom 

row. In part B, the FSM is in state s2 and both the north and northwest values are 

known. As the current cell in part B belongs to the class being clustered, the 

northeast neighbor's value must be checked, and this information is encapsulated 

in the state for the next cell, s4. The current cell in part C does not belong to a 

cluster, so the northeast neighbor's value is not checked and thus will not be 

available in the state for the next cell. However, the value of the north neighbor, 

also the subsequent cell's northwest neighbor, is known at this point and can 

encapsulated in the next state, s5.

Figure 3-5 shows the formal definition of this FSM, but there are several 

deviations from this definition in the actual implementation. Note that the final 

state, s7, is not shown in Figure 3-3. While the formal definition requires an end-

of-input marker at the end of the input matrix, the implementation does not utilize 

such a marker. Rather, simple bounds checking determines when the end of input 

is reached. The first row of the matrix is handled as a special case, because there 

are no north neighbors for that row's cells. Additionally, bounds checking is used 

to determine when the end of a row is reached, and the final cell is handled as a 
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special case, due to the lack of a northeast neighbor for that cell. When the FSM 

proceeds to the beginning of the next line, the state is reset to s6, which forces the 

FSM to assume that the west and northwest neighbors are zeros, thus avoiding 

references to those nonexistent neighbors.

It is possible, however, to implement the FSM strictly following the formal 

definition. The insertion of a buffer row of zeros at the beginning of the matrix 

would eliminate the necessity of treating the first row of data elements as a special 

case. Also, a buffer column of zeros on both sides of the matrix would allow the 

FSM to proceed from one row to the next without explicit bounds checking, as the 

FSM would reset to s6 by its natural progression. However, using either approach 

is ill-advised, due both to increased storage space requirements and to the 

additional overhead associated with retrieving buffer elements from memory.

Maintaining the state can be done explicitly by using an integer state 

variable, as is the case with the nearest-four FSM implementation from Part 2. 

Alternatively, the state may be implicitly maintained by segmenting the code by 

state and jumping to the appropriate code segment as the state changes, which is 

the method used in this nearest-eight FSM implementation. The program is 

written in C, and goto statements are used to transition from one state to 

another. While such a practice can harm program locality and impair predictive 

branch execution, the goto method has shown improved performance, as it 

eliminates the necessity of checking and possibly setting a state variable at each 
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cell in the matrix.

3.2  Relation to UNION-FIND Algorithm

As defined in [5], a disjoint-set data structure maintains a collection of non-

overlapping sets of objects, and each set is identified by a single representative 

object contained within the set. The representative may change as the set is 

altered, but the representative must remain the same as long as the set is unaltered. 

A disjoint-set forest is an implementation of the disjoint-set data structure that 

represents sets by rooted trees. Each node in the tree contains one member and 

points only to its parent node, and the root of the tree is the representative for the 

set.

Three functions provide useful manipulations of a disjoint-set data structure: 

MAKE-SET(x), UNION(x, y), FIND-SET(x). The MAKE-SET function creates a 

new set whose only member object is x. The UNION function combines the two 

sets containing objects x and y. Finally, FIND-SET returns the representative of 

the set containing x. An algorithm that performs these operations on a disjoint-set 

data structure is known as a UNION-FIND algorithm.

The csize array (or list N in the original HK specifications) may be viewed 

as a disjoint-set forest. Each set is a cluster, and the objects contained in the sets 

are cluster labels. While a cluster may contain multiple labels, only the proper 

label is considered the representative. Figure 3-6 illustrates a sample csize array 
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and its graphical representation as trees. The root node of each tree is the proper 

label of the represented cluster.

HK is an example of a UNION-FIND algorithm. When a cell being 

examined belongs to the class being targeted for clustering and none of its 

previously examined neighbors belong to a cluster, then that cell is assigned the 

next unused cluster label and csize is updated to reflect the new cluster. This 

satisfies the MAKE-SET requirement of a UNION-FIND algorithm. When a 

linking pathway is discovered between two previously disjoint clusters, the two 

must be merged. This implementation of HK performs this task in a function 

called MERGE. The MERGE function first finds the proper cluster label for each 

of the two clusters by following the label reference chain in csize. Then, if the 

two proper labels are different—indicating that the two clusters are, in fact, 

disjoint—MERGE updates csize to redirect the proper label of one cluster to 

the proper label of the other. This satisfies both the UNION and FIND-SET 

requirements of a UNION-FIND algorithm.

Two heuristics may be used to improve the performance of the UNION-

FIND operations on a disjoint-set forest: path compression and union by rank. 

Path compression is used during the FIND-SET operation to set each node's 

parent pointer directly to the root node or representative. To accomplish this, the 

FIND-SET becomes a two-pass method. The first pass follows the path of parent 

pointers from parameter node x to the root node, while the second pass traverses 
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back down the path to set each node's parent pointer directly to the root node. The 

nearest-four FSM HK  implementation from Part 2 uses path compression, as 

does this nearest-eight FSM HK implementation within the MERGE function, 

which includes the FIND-SET operation.

The second heuristic, union by rank, affects the UNION operation, making 

the root node of the smaller of the two trees point to the root node of the larger 

tree. Rather than explicitly tracking the size of each tree in a disjoint-set forest, a 

separate rank value is maintained for each node. The rank is an upper bound on 

the height of the node. When a singleton tree is created with MAKE-SET, the 

single node begins with a rank of 0. When two trees are passed to the UNION 

function, the root node with higher rank becomes the parent of the root node with 

lower rank, but the rank of both root nodes remains unchanged. If the rank of both 

root nodes is equal, one root node is chosen arbitrarily to become the parent node, 

and its rank is incremented by 1. These tie-breaker situations are the only times 

when a node's rank is changed.

None of the HK implementations considered in this study apply union by 

rank. The original HK specification merges the cluster with the larger proper label 

into the cluster with the smaller proper label. Similarly, the nearest-four FSM 

implementation makes arbitrary decisions when merging two clusters. However, 

the MERGE function in this nearest-eight FSM implementation does make 

informed decisions when merging two clusters, which we shall call union by 

19



cluster size. Recall that the csize array is viewed as a disjoint-set forest, and 

each node of a tree is a cluster label. Each tree represents a cluster, which may 

have multiple labels associated with it. While union by rank would make the tree 

with more nodes—or the cluster with more labels associated with it—the parent 

of the tree with fewer nodes, union by cluster size sets the new parent as the tree 

whose represented cluster size is larger than the tree whose represented cluster 

size is smaller. While this method may cause the runtime for a UNION operation 

to perform worse than it would using union by rank, it is important to consider the 

cost of relabeling cells in the matrix during the second pass relabeling phase. 

Furthermore, since the csize array tracks the size of clusters as they are formed, 

the need for an additional array to track node ranks is avoided. See Part 4 for 

runtime comparisons between an implementation with union by cluster size and 

one without.

For an example of how union by rank and union by cluster size can produce 

different results, refer again to Figure 3-5. If clusters 2 and 6 were to be merged 

using union by cluster size, the new proper label and root node would be 6, even 

though the tree for cluster 2 is larger than that for cluster 6. Thus, only eight cells 

previously belonging to cluster 2 would have to be relabeled during the second 

pass. On the other hand, union by rank would merge cluster 6 into cluster 2, 

requiring eleven cells previously belonging to cluster 6 to be relabeled.
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3.3  Alternative Implementations

While all discussion of the HK algorithm to this point has involved the 

identification of a single cluster type in a given pass, it is possible to implement 

the algorithm in such a way as to identify multiple cluster types in a single pass. 

Such an implementation comes with a few caveats, however. Regardless of 

whether a finite state machine is used, identifying multiple clusters in a single 

pass precludes the option of performing the cluster label assignments in-place. 

When the cluster label assignments are stored in the original matrix, it becomes 

impossible to determine whether a nonzero neighbor value indicates that the 

neighbor belongs to the same cluster type as the current cell, because the 

neighbor's original value has been overwritten. Therefore a second matrix must be 

allocated to store the results so that the original cells' values may be retained.

Multiple concurrent finite state machines may used to identify clusters of 

multiple types in a single pass, with each FSM maintaining a separate state. At 

each cell in the matrix, every FSM must examine that cell and make its own state 

transitions and action individually. The drawback to this method is that state 

variables must be maintained instead of having separate blocks of execution like 

the FSM implementation presented in this study. One possible method for 

overcoming this hurdle is to spawn each individual FSM as a separate process or 

system thread.
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The HK algorithm may parallelized for execution in a parallel computing 

environment by segmenting the data into distinct regions [1]. Each data segment 

can then be clustered by the algorithm on separate processors without memory 

sharing. It is important that each data segment has a unique region of available 

cluster labels to ensure that no two individual data segments contain overlapping 

labels. The results for these individual segments can then be sent to one master 

processor, which performs cluster merging along the borders of adjacent data 

segments. The overhead for such communication among processors can be great, 

however, and tests have shown that the benefits of such parallelization are very 

slim, if even existent. However, the benefit may be increased as the data space 

becomes larger, much larger than the test data used to evaluate the FSM 

implementation's performance in the next part.
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4  Workstation Performance
An appropriate application of the FSM HK implementation may involve very 

large datasets or many repetitions of cluster analysis of constantly changing data, 

as is often the case in ecological or other models utilizing landscape maps. This 

part presents performance tests conducted in an environment suitable to such 

applications and demonstrates the clear advantage of using the FSM HK 

implementation.

4.1  Methodology

The tests described here were performed on a Linux workstation with a 2.4 

GHz Intel Xeon processor. The system contains 8 KB L1 data cache, 512 KB L2 

cache, and no L3 cache.

The target class density metric is simply the percentage of cells within a 

matrix that belong to the class being targeted for cluster identification. 

Performance is evaluated as cells processed per millisecond, where cells is a 

count of target and non-target class cells alike (i.e., the total size of the matrix). 

The time measurements are taken as wall-clock time (as opposed to CPU time) in 

order to capture the effect of delays caused by data element accesses from 

memory. The processing time is measured over what is considered a complete 

cluster analysis, which includes the first pass of temporary cluster ID assignments 
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and the second pass of final cluster ID relabeling. However, time taken for file I/O 

and data structure initialization is not included. For the plots in this section that 

display the number of cells processed per millisecond, each point is the mean of 

forty observations of a particular implementation and parameter set. The error 

bars in these plots represent the standard deviation.

These tests compare the FSM and non-FSM implementations of the HK 

algorithm. Additionally, two separate FSM implementations are examined: one 

utilizing the MERGE method discussed in Section 3.2 that makes the larger of 

two merged clusters the parent, referred to below as proper merge; and a version 

that arbitrarily decides which of two merged clusters becomes the parent, referred 

to as lazy merge. When comparing the FSM and non-FSM implementations, both 

use proper merge.

In addition to the processing rate comparison between the FSM and non-

FSM implementation, figures are provided for the number of merges and relabel 

operations at each target class density level. Note that the term “merge check” in 

in these figures refers to any possible merge situation, such as when the cell 

currently under examination and both its northeast and west neighbors all belong 

to the target class. However, only when the northeast and west neighbors in this 

situation have different cluster IDs does an “actual merge” take place. Also note 

that the number of merge checks and actual merges is constant among all 

implementations: FSM or non-FSM, lazy merge or proper merge. The only 
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difference arises between the lazy and proper merge methods in terms of which of 

the two clusters becomes the parent cluster. This in turn affects the number of 

relabeling operations necessitated in the second-pass.

4.2  Test Data

Four datasets are used in the following tests. The first dataset consists of 

nineteen randomly generated 5000×5000 binary-valued matrices, one for each of 

d={0.05, 0.1, 0.15, ..., 0.95}, where d is the target class density. Thus, each cell in 

the matrix is assigned a value of 1 with d probability and a value of 0 with (1-d) 

probability. While this simple stochastic method is not guaranteed to produce a 

matrix with a target class density of precisely d, all matrices used in this test fell 

within 0.02% of d. Figure 4-1 shows two of the generated matrices, for d=0.25 

and d=0.7.

The second dataset is a land cover raster map of five counties surrounding 

Fort Benning in Georgia [6]. This is represented as a 2771×2814 matrix with 

fifteen target classes. These fifteen classes, along with their densities and the 

number of identifiable clusters for each are given in Table 4-1. The land cover 

map also contains a sixteenth “no data” class, which defines the border surround 

the five counties in question. However, as this class is simply used as padding in 

the minimum bounding rectangle for the five counties area, it is not considered in 

the tests below. Thus, the total of all target class densities given in Table 4-1 is 
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somewhat less than 1. This landscape map, with all fifteen target classes, is shown 

in Figure 4-2.

The third dataset is a land cover raster map centered on the Tennessee Valley 

and southern Appalachian Mountains, covering portions of Tennessee, Alabama, 

Georgia, North Carolina, and South Carolina [8]. This 4300×9891 map contains 

twenty-one classes. Unlike the Fort Benning landscape map, this map is fully 

populated, without a “no data” class. Table 4-2 gives the target classes, densities, 

and number of clusters. This landscape map is shown in Figure 4-3.

The fourth and final dataset is another land cover map, covering a portion of 

Yellowstone National Park [8]. This 400×500 map is much smaller than all the 

previous maps and contains six classes. As with the Tennessee Valley map, this 

map is fully populated with target class values. Table 4-3 gives the target classes, 

their densities and number of clusters, and the landscape map is shown in Figure 

4-4.

4.3  FSM and non-FSM Performance Comparisons

Figure 4-5 shows the performance of both FSM and non-FSM 

implementations on the randomly generated 5000×5000 matrices. The FSM 

implementation exhibits a clear performance boost over the non-FSM version 

across all target class density levels. The least improvement is observed for 

d=0.05, with the FSM implementation performing at 128,600 cells per 
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millisecond and the non-FSM at 125,000. This is explained by the infrequency 

and wide dispersion of the target class cells across the matrix. When target class 

cells are fewer and farther apart, the FSM is unable to retain knowledge of 

previously examined neighbors less often, and the FSM advantage is diminished. 

Conversely, the FSM advantage increases as the target class density approaches 

maximum. The most separation between the two implementations is observed at 

d=0.95, with the FSM performing at 100,040 cells per millisecond and the non-

FSM at 69,137. With such a high target class density, the FSM is able to retain 

neighbor value knowledge much of the time, thereby significantly reducing the 

number of memory references.

The performance for both FSM and non-FSM implementations is worst near 

0.45 target class density. This corresponds to the number of merge and relabel 

operations shown in Figures 4-6 and 4-7, respectively, reaching their maximum 

levels in approximately the same density range.

The FSM and non-FSM performance comparison on the 2771×2814 Fort 

Benning landscape map is given in Figure 4-8. As with the randomly generated 

matrices, the smallest margin of improvement is observed at the lower target class 

density levels, while the largest margin is observed at the highest target class 

density. At d=0.00005 (class 7), the FSM processes 135,375 cells per millisecond, 

while the non-FSM is competitive at 130,395. On the other end of the spectrum, 

when d=0.20648 (class 42), the FSM outperforms the non-FSM at 85,782 cells 
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per millisecond to only 73,148.

Figure 4-9 shows the performance comparison for the  4300×9891 Tennessee 

Valley map. These results follow the same pattern as the with the Fort Benning 

map. The smallest margin of improvement for the FSM over the non-FSM 

implementation is observed at the low density levels. At d=0.00168 (class 10), the 

FSM processes 135,225 cells per millisecond while the non-FSM processes 

130,752. The largest margin of improvement occurs at d=0.22324 (class 1), with 

the FSM implementation processing 117,196 cells per millisecond versus the non-

FSM implementation at 98,153 cells per millisecond. This target class is also 

interesting in that it breaks the trend of generally monotonically decreasing 

processing rates as the target class densities increase. To see why this is the case, 

refer to Table 4-2 and Figure 4-10. Class 1 has only 549 clusters—three orders of 

magnitude lower than either of the two target classes—19 and 17—with similar 

density levels. This corresponds to the significantly lower number of merge 

operations (both merge checks and actual merges) for class 1. Figure 4-11 shows 

the Tennessee Valley map with only classes 19, 1, and 17 visible in succession.

The final workstation performance comparison between the FSM and non-

FSM implementations is shown in Figure 4-12, using the Yellowstone dataset. 

This test case follows the same general pattern as before. The smallest margin of 

improvement is once again at a small density level—d=0.00038—with the FSM 

processing 132,669 cells per millisecond versus the non-FSM at 124,804. 
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Likewise, the largest margin of improvement is at d=0.36626. Here the FSM 

processes 92,059 cells per millisecond while the non-FSM processes only 66,833. 

As it happens, the number of merge and relabel operations on this map is constant 

across all target classes.

One notable facet of the Yellowstone is that the map is very small compared 

to those in the previous tests. The implementations examined here store the matrix 

using 4-byte integers, resulting in just under 2 KB per row for this 500 column 

matrix. Recall that the HK algorithm, using the nearest-eight neighborhood rule, 

will examine at most the northwest, north, northeast and west neighbor values for 

any given cell. When the matrix is stored in a row-major format, as it is here, all 

possible neighbor references fall within the previous ncols+1 matrix elements, 

where ncols is the number of columns in the matrix. Thus, for the Yellowstone 

map it is possible, though not guaranteed, that all four relevant neighbors at any 

given time are present in the 8 KB L1 cache in the testing environment used here. 

Failing that, it is likely those data elements are present in the 512 KB L2 cache. 

Though the cost of accessing the four relevant neighbor values is therefore 

decreased substantially, the FSM nonetheless exhibits a performance boost by 

encapsulating neighbor values in the state.
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4.4  Lazy and Proper Merge Performance Comparisons

To demonstrate the significantly detrimental effect that a lazy 

implementation of the MERGE method can have on the performance of HK, 

some comparisons between FSM HK implementations with lazy and proper 

merging are presented here, using the randomly generated matrices and the 

Tennessee Valley landscape map. The relative performances of the non-HK 

implementations with lazy and proper merging are quite similar and thus are not 

presented here.

Figure 4-13 shows the processing rates of two implementations using lazy 

and proper merge. At the lowest density, d=0.05, the implementation with lazy 

merging slightly outperforms the proper merging method. This is to be expected, 

as the low density of the target class means that there are relatively few second-

pass relabeling operations taking place for either implementation, as can be seen 

in the previously referenced Figure 4-7. The proper merge implementation 

involves a slight overhead incurred by checking the size of each cluster being 

merged, and this overhead is not fully and consistently mitigated for the smallest 

density target classes in any of the tests discussed here. However, as the target 

class density increases the separation between two merging methods becomes 

very great, corresponding to the reduced number of second-pass relabeling 

operations.
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The relative performances of lazy and proper merge on the Tennessee Valley 

landscape map can be seen in Figure 4-14. As with the randomly generated 

matrices, the lazy method is competitive with the proper method for very small 

target class densities. In this case the lazy method never actually outperforms the 

proper method, though the advantage of proper merge is often negligible. Figure 

4-15 shows the number of second-pass relabeling operations necessitated by each 

of the two merging methods. As the target class density increases, the separation 

between the two becomes significant.
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5  Palm Device Performance
In addition to applications that would naturally be suited to a fixed-location, 

workstation computing environment, it is posited that the FSM HK 

implementation could be useful in low-powered, embedded, or mobile computing 

environments. One can imagine, for instance, researchers wishing to perform 

cluster analysis on landscape data collected in-field via manual observations or 

GPS on a lightweight computing device. While the FSM implementation does not 

outperform the non-FSM implementation in the computing environment used in 

the following tests, the underlying causes of its lackluster performance are 

explored, and potentially suitable hardware specifications are discussed.

5.1  Methodology 

The tests described in this part were performed on a Palm IIIxe personal 

digital assistant. This mobile device, running Palm OS 3.5.3, contains a 16 MHz 

Motorola Dragonball 68328EZ processor with 8 MB RAM and no cache.

Due to the memory structure imposed by the Palm operating system, no 

single allocated data region, or chunk, may exceed approximately 64 KB. This 

severely limits the size of the test data used here. While it would be possible to 

segment a matrix across multiple chunks, perform cluster analysis on each 

segment and then merge the results, it was decided to forgo this option to avoid 
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the overhead incurred by additional merge and relabel operations. Even with the 

small datasets used here, it sometimes took as long as twenty seconds to perform 

a single cluster analysis.

While the results in Part 4 were presented in terms of cells processed per 

millisecond, the Palm device processing rates are reported as cells processed per 

second. While Palm OS does not allow programmer access to the underlying 

system clock, and the current time is only accessible at finest granularity of one 

second, the OS generates “system ticks” one hundred times per second. As this is 

the most precise timing method available, the time measurements used here are 

based on these system ticks. While it is not guaranteed that the number of system 

ticks per second is constant, extensive testing has not exposed any variation in this 

rate.

While the workstation tests in Part 4 were performed forty times each to 

compute the mean running time for each implementation and target class density, 

each implementation on the Palm is executed exactly once for each target class in 

each dataset. Due to the single-threaded nature of the Palm OS and the lack of 

system or I/O interrupt handling in these HK implementations, the run time is 

observed to be constant within one system tick for each implementation on any 

given dataset and target class.
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5.2  Test Data

Two datasets are used in the following tests. The first is a series of randomly 

generated binary matrices, similar to those described in Section 4.2. These 

matrices are 150×150, with one matrix for each of d={0.05, 0.1, 0.15, ..., 0.95}.

The second dataset is a segment from the Fort Benning landscape map 

described in Section 4.2 and is shown in Figure 5-1. This 175×175 matrix has 

thirteen target classes, and the densities and number of clusters of each class is 

shown in Table A-4.

5.3  FSM and non-FSM Performance Comparisons

Figure 5-2 shows the performance of both FSM and non-FSM 

implementations on the randomly generated 150×150 matrices. The non-FSM 

implementation clearly outperforms the FSM implementation for small target 

class density values. At d=0.05, the non-FSM version processes 13,975 cells per 

second, while the FSM processes only 12,640 cells per second. However, as the 

density level increases the non-FSM advantage is diminished. When d=0.3, the 

non-FSM outperforms the FSM at 2,577 cells per second to a very close 2,508 

cells per second. While this gap is similarly narrow to the tail end of the graph, 

the FSM never actually reaches a point where it outperforms the non-FSM by any 

amount. As an aside, the tail end of the graph never increases, as was the case 

with the randomly generated matrices on the workstation in Part 4. This is an 
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artifact of the Palm OS requirement that a system call, which performs bounds-

checking, be used to write to any area of memory except for the stack or heap. 

Because the memory architecture requires that our matrix be stored in a more 

permanent area of memory (analogous to a hard drive or secondary storage), this 

slow method must be used when assigning class membership and relabeling.

The results of the second test on the Fort Benning landscape map segment 

are shown in Figure 5-3. As in the previous test, the non-FSM implementation has 

a clear advantage over the FSM for small target class density values, but that 

advantage wanes as the target class densities increase. At d=0.00235 (class 20), 

the non-FSM processes 40,833 cells per second while the FSM processes only 

31,572 cells per second. As before, there is never a point where the FSM 

implementation outperforms the non-FSM.

5.4  Further FSM Performance Analysis

The reason for the lackluster performance of the FSM can be explained by 

the Palm IIIxe system specifications. While the FSM might be expected to 

perform better than the non-FSM by significantly reducing the number of data 

element memory accesses, thereby mitigating the negative effects of a lack of 

cache memory between the main RAM and CPU registers, it is ironically this very 

lack of any cache that  hinders the FSM. The non-FSM does indeed retrieve data 

elements from memory more often, but its program code follows a much more 
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predictable path, with far fewer possible branches. This allows the CPU to pre-

fetch sequential instructions much more successfully than with the FSM code. 

With no cache to store program code, the penalty for incorrectly predicting code 

branches and pre-fetching the wrong instruction is much greater, because this 

stalls the CPU pipeline while waiting for the correct instruction from main 

memory.

This effect can be demonstrated with the example C code segment in Figure 

5-4. This is a simple doubly-nested loop that accesses the one hundred element 

array in the inner loop and performs a test-and-set on another variable k in the 

outer loop. When this code is compiled with global compiler optimizations, the 

number of code branches is significantly reduced when compared to an 

unoptimized compiled version. The variables i, j, and k are specified as register 

variables in order to avoid retrieving those values from the stack every time they 

are referenced when not using any compiler optimizations. Furthermore, the inner 

loop stops on condition j < (i/100), which prevents the compiler-optimized 

version from gaining an advantage from loop unrolling.

The relevant assembly code segment resulting from compiling without 

global compiler optimizations is shown in Figure 5-5, and the version produced 

with global compiler optimizations is shown in Figure 5-6. Though it is certainly 

unnecessary to dwell on the details of each of these figures, note that the 

instructions that cause branching are in bold typeface. In the unoptimized version 
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there are eight branch points, compared to only five in the optimized version. The 

optimized version executes in 2.51 seconds, while the unoptimized, branch-heavy 

version executes in a whopping 9.71 seconds. The lack of locality in the 

unoptimized code clearly has a negative effect on performance.

The assembly code resulting from the FSM and non-FSM implementations is 

too unwieldy to present here, so refer instead to Figure 5-7. This figure shows the 

code branches for each cell processed in the first pass of the HK algorithm. The 

top tree represents the non-FSM implementation. The root of the tree corresponds 

to the beginning of the process of examining a single cell, and each branch 

corresponds to a test condition. Upon reaching a leaf node in the tree, the current 

cell has been either added to a cluster or ignored (in the case of a non-target class 

cell), and the next cell is examined. At this point the root node of the tree is 

logically reentered. The first, single-leaf subtree represents a non-target class 

value for the current cell. The remaining branches represent the various neighbor-

cell value comparisons.

The bottom tree in Figure 5-7 represents the logical branches in the FSM 

implementation. The dashed branches represent state checks, but otherwise this 

tree works much the same as the previous. The three-leaf subtree near the root 

again represents the case when the currently examined cell belongs to a non-target 

class. Upon reaching any leaf node, a state transition occurs and the next cell is 

examined, logically reentering the root node of the tree.
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While the FSM logical structure is more complex than that of the non-FSM, 

the benefit of this complexity arises when the current state encapsulates more than 

just the previously examined cell's value. This situation is represented graphically 

in Figure 5-7 as the four two-leaf subtrees below the level of state-check 

branches, corresponding to four of the seven states defined in the FSM. At low 

target class density levels the added complexity is obviously detrimental, but the 

overhead of the greater number of branches is mitigated when the target class 

density is higher and the FSM spends increased time in the four more 

knowledgeable states.

Given these facts, it is reasonable to assume that the FSM could well 

outperform the non-FSM implementation in limited capacity devices, provided 

that the device has an instruction cache with enough capacity—perhaps just a few 

kilobytes—to overcome the ill effects of the additional code branching. Research 

presented in [3] shows that a simulated Palm m515—similar to the Palm IIIxe, but 

with a 33MHz Motorola Dragonball MC68VZ328 CPU—can have effective 

memory access times reduced by 50% with as little as 1-2 KB of cache. However, 

to date no Palm devices have been manufactured with cache memory, and no 

other equivalent architecture was available at the time of this study.
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6  Conclusion
This study has provided an efficient finite state machine implementation of 

the Hoshen-Kopelman algorithm using the nearest-eight neighborhood rule. By 

using states to encapsulate neighbor cell information and reduce redundant 

memory accesses, along with informed UNION-FIND operations, this 

implementation clearly outperforms an implementation based upon the original 

HK specifications on a workstation testbed for both randomly generated and 

actual landscape maps. While this FSM implementation does not outperform the 

classic implementation on a Palm device, it is nonetheless competitive for all but 

very sparse target class densities. Tests indicate that a potential Palm-like device 

with a minimum amount of cache memory would allow this FSM implementation 

to perform much more efficiently.

Possible future work in this vein remains. Just as the original HK algorithm 

can be applied to three dimensional lattices, so could a FSM implementation. 

However, as the number of neighbor relationships increases, so does the number 

of states in a FSM adaptation. While the FSM in this study was defined with 

extensive manual examination and optimization, it may be possible to create a 

system that can define the FSM states for an arbitrarily defined neighborhood rule 

automatically. This would open up the possibility for researchers without 

programming knowledge to define custom neighborhood rules suitable to their 
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particular applications. Though this study had a particular focus on the analysis of 

landscape maps, the methods presented here should be applicable for many types 

of data representable in a lattice format.
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Figure 2-1. HK method for assigning a label to a site si.

if si is of type B
    si = 0
else
    search previously labeled neighbor sites

    if no A neighbors found
        si = k+Δk
        N(si) = 1
        k = k+Δk
    else
        find proper labels K of neighboring A sites

        si = min(K)
        N(si) = 1

        foreach k in K
            N(si) = N(si) + N(k)
            N(k) = si

        endfor
    endif
endif        
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Figure 2-2. HK method for determining the proper label of a site sn.

r = sn

t = -N(r)
if t < 0
    return r
endif

while t > 0
    r = t
    t = -N(r)
endwhile

N(sn) = -r

return r
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Figure 2-3. An 8×8 binary, square lattice input for HK. Here -1 denotes an 
A site, and 0 a B site.

-1 -1  0  0 -1  0 -1 -1

 0  0 -1  0 -1  0 -1 -1

 0 -1 -1  0 -1  0 -1 -1

 0 -1  0  0 -1 -1 -1  0

 0 -1 -1  0  0  0  0 -1

-1  0 -1  0 -1  0  0 -1

-1  0  0  0  0  0 -1 -1

-1  0  0  0  0  0 -1  0

Figure 2-4. The lattice from Figure 2-3 after HK cluster identification (left) 
and the contents of array N after processing each row of the lattice (right). 

The integers 1 through 9 above N are indices for the list and also denote 
cluster labels.

 1  1  0  0  2  0  3  3

 0  0  4  0  2  0  3  3

 0  5  4  0  2  0  3  3

 0  4  0  0  2  2  2  0

 0  4  4  0  0  0  0  6

 7  0  4  0  8  0  0  6

 7  0  0  0  0  0  9  6

 7  0  0  0  0  0  6  0

 1  2  3  4  5  6  7  8  9

 2  1  2  0  0  0  0  0  0

 2  2  4  1  0  0  0  0  0

 2  3  6  3 -4  0  0  0  0

 2 12 -2  4 -4  0  0  0  0

 2 12 -2  6 -4  1  0  0  0

 2 12 -2  7 -4  2  1  1  0

 2 12 -2  7 -4  4  2  1 -6

 2 12 -2  7 -4  5  3  1 -6
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Figure 2-5. The lattice from Figure 2-3 after the HK algorithm and the 
optional second pass relabeling operation.

 1  1  0  0  2  0  2  2

 0  0  4  0  2  0  2  2

 0  4  4  0  2  0  2  2

 0  4  0  0  2  2  2  0

 0  4  4  0  0  0  0  6

 7  0  4  0  8  0  0  6

 7  0  0  0  0  0  6  6

 7  0  0  0  0  0  6  0

Figure 2-6. North, east, west and south relationship to cell (i, j).

i, ji, j-1 C

N

E

S

Wi, j+1

i+1, j

i-1, j
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Table 2-1: States Defined by Nearest-Four FSM

State Encapsulated Information
s0 Not currently in a cluster (W == 0)
s1 Currently in a cluster on current line (W != 0, NW == 0)
s2 Currently in a cluster on previous line (W != 0, NW != 0)
s3 At a map boundary
s4 Finished
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Figure 3-1. A hypothetical landscape feature (left) and its representation 
in a raster format (right).

Figure 3-2. Cardinal and ordinal neighbor relationships to cell (i, j).

i, ji, j-1 C

N

E

S

Wi, j+1

i+1, j

i-1, ji-1, j-1 i-1, j+1

i+1, j+1i+1, j-1

NW NE

SW SE
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Figure 3-3. Seven states in the nearest-eight FSM.

s0 s1 s2

s3 s4 s5

s6

current

unknown
no cluster
cluster

Figure 3-4. An example situation where partial neighbor information can 
be retained using state s5.

s2

s4

s5

A

B

C

D

current

unknown
no cluster
cluster
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Figure 3-5. Formal FSM definition of nearest-eight FSM.

FSM = 

Q = 
 = Σ { C, T } U { 0, ..., max_label }

 = δ

F = 

Assumptions:
  Each input symbol is composed of the current/north/northeast cell values
  C is the cell value denoting an element that should be clustered
  T is the cell value indicating the map terminal
  ! is the unary negator

( Q, Σ, δ, q0, F)

{ s0, s1, s2, s3, s4, s5, s6, s7 }

{ (s0, 0/xn/xne, s0), (s0, 0/!0/!0, s4), (s0, C/0/!0, s2),

  (s0, C/!0/0, s3), (s0, C/0/0, s1), (s1, 0/xn/xne, s6),

  (s1, C/xn/0, s1), (s1, C/xn/!0, s2), (s2, 0/xn/xne, s5),

  (s2, C/xn/0, s3), (s2, C/xn/!0, s4), (s3, 0/xn/xne, s6),

  (s3, C/xn/0, s1), (s3, C/xn/!0, s2), (s4, 0/xn/xne, s5),

  (s4, C/xn/0, s3), (s4, C/xn/!0, s4), (s5, 0/xn/xne, s0),

  (s5, C/0/!0, s2), (s5, C/!0/!0, s4), (s5, C/!0/0, s3),

  (s5, C/0/0, s1), (s6, 0/xn/xne, s0), (s6, C/0/0, s1),

  (s6, C/0/!0, s2), (s6, C/!0/0, s3), (s6, C/!0/!0, s4),

  (s
0
, T/x

n
/x

ne
, s

7
), (s

1
, T/x

n
/x

ne
, s

7
), (s

2
, T/x

n
/x

ne
, s

7
),

  (s3, T/xn/xne, s7), (s4, T/xn/xne, s7), (s5, T/xn/xne, s7),

  (s6, T/xn/xne, s7) }

q0 = { s6 }

{ s7 }

  xn, xne are the north, northeast cell values (variable)

  xn, xne Є { 0, ..., max_label }
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Figure 4-1. Two 5000×5000 binary matrices, with densities d=0.25 (left) 
and d=0.7 (right).

Figure 3-6. A csize array and its representation as a disjoint-set forest.
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Table 4-1: Target Classes, 
Densities, and Number of Clusters 
in Fort Benning Landscape Map

Class Density Clusters
7 0.00005 133
73 0.00080 252
33 0.00114 105
20 0.00175 961
24 0.00617 7481
11 0.00982 4444
22 0.01128 15623
83 0.01867 7783
80 0.03261 18590
91 0.03980 28149
18 0.04047 518
43 0.04581 59850
31 0.06375 49220
41 0.15167 77996
42 0.20648 58757

Table 4-2: Target Classes, 
Densities, and Number of Clusters in 

Tennessee Valley Landscape Map

Class Density Clusters
2 0.00160 3248
10 0.00168 13284
8 0.00232 6462
6 0.00233 12553
4 0.00313 10358
15 0.00335 18373
18 0.00546 27199
3 0.00600 4214
16 0.00994 27164
5 0.01137 8253
7 0.01415 13960
9 0.01851 23534
12 0.02054 47455
20 0.02573 121709
13 0.03160 88377
11 0.03631 38711
14 0.05615 175768
21 0.09886 79882
19 0.19180 314362
1 0.22324 549
17 0.23531 210952

Table 4-3: Target Classes, 
Densities, and Number of Clusters 

in Yellowstone Landscape Map

Class Density Clusters
6 0.00038 5
1 0.00118 5
5 0.06643 104
4 0.24212 80
2 0.32365 83
3 0.36626 124
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Figure 4-2.  A 2771×2814 landscape map of a five county region 
surrounding Fort Benning, GA. The map contains fifteen target classes.
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Figure 4-3.  A 4300×9891 landscape map centered on the Tennessee Valley 
and southern Appalachian Mountains. The map contains twenty-one classes.

Figure 4-4.  A 400×500 landscape map covering a portion of Yellowstone 
National Park. The map contains six classes.
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Figure 4-5. Performance of FSM and non-FSM implementations on randomly generated 5000×5000 matrices.
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Figure 4-6. Merge checks and actual merge operations on randomly generated 5000×5000 matrices. Note the 
logarithmic scale of the y-axis.
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Figure 4-7. Second-pass relabeling operations necessitated by lazy and proper MERGE implementations on 
randomly generated 5000×5000 matrices. Note the logarithmic scale of the y-axis.
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Figure 4-8. Performance of FSM and non-FSM implementations on target classes in 2771×2814 Fort Benning 
map.
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Figure 4-9. Performance of FSM and non-FSM implementations on target classes in 4300×9891 Tennessee 
Valley map.
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Figure 4-10. Merge checks and actual merge operations on target classes in 4300×9891 Tennessee Valley map.
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Figure 4-11.  The 4300×9891 Tennessee Valley landscape map with class 19 
(d=0.19180), class 1 (d=0.22324), and class 17 (d=0.23531) visible from top to 

bottom.
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Figure 4-12. Performance of FSM and non-FSM implementations on target classes in 400×500 Yellowstone 
map.
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Figure 4-13. Performance of lazy and proper MERGE implementations using a FSM on randomly generated 
5000×5000 matrices.
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Figure 4-14. Performance of lazy and proper MERGE implementations using a FSM on target classes in 
4300×9891 Tennessee Valley map.
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Figure 4-15. Second-pass relabeling operations necessitated by lazy and proper MERGE implementations on 
target classes in 4300×9891 Tennessee Valley map.
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Table 5-1: Target Classes, Densities, 
and Number of Clusters in Fort 

Benning Landscape Map Segment

Class Density Clusters
20 0.00235 48
83 0.01218 157
73 0.01398 41
91 0.01554 124
11 0.02015 53
80 0.04118 443
31 0.06015 790
41 0.08447 762
43 0.09656 725
24 0.12584 508
22 0.13812 825
42 0.18439 610
18 0.20509 21

Figure 5-1. A 175×175 segment of Fort Benning landscape map. This map 
contains thirteen target classes.
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Figure 5-2. Performance of FSM and non-FSM implementations on randomly generated 150×150 matrices.
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Figure 5-3. Performance of FSM and non-FSM implementations on  175×175 Fort Benning map segment.
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Figure 5-4. C code segment to demonstrate effect of performance 
degradation caused by code branching.

int16 array[100];
register int16 i, j, k;

k = 1;
for (i = 0; i < 10000; i++) {
    for (j = 0; j < i/100; j++) {
        array[j] = i*2-j;
    }
    if (k == 0) k = 1;
    else k = 0;
}
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Figure 5-5. Loop from Figure 5-3 compiled without optimizations. 
Branching instructions are in bold typeface.

    move.l %d0,-22(%a6)
    moveq.l #1,%d5
    clr.w %d3
    .even
.L5:
    cmp.w #9999,%d3
    jble .L8
    bra .L6
    .even
.L8:
    clr.w %d4
    .even
.L9:
    move.w #5243,%d0
    move.w %d3,%d1
    muls.w %d0,%d1
    move.l %d1,%d0
    clr.w %d0
    swap %d0
    move.w %d0,%d1
    asr.w #3,%d1
    move.w %d3,%d2
    moveq.l #15,%d0
    asr.w %d0,%d2
    move.w %d1,%d0
    sub.w %d2,%d0
    cmp.w %d4,%d0
    jbgt .L12
    bra .L10
    .even

.L12:
    move.w %d4,%a0
    move.l %a0,%d1
    move.l %d1,%d0
    add.l %a0,%d0
    lea (-226,%a6),%a0
    move.w %d3,%d1
    move.w %d1,%d2
    add.w %d3,%d2
    move.w %d2,%d1
    sub.w %d4,%d1
    move.w %d1,(%a0,%d0.l)
.L11:
    addq.w #1,%d4
    bra .L9
    .even
.L10:
    tst.w %d5
    jbne .L13
    moveq.l #1,%d5
    bra .L7
    .even
.L13:
    clr.w %d5
.L14:
.L7:
    addq.w #1,%d3
    bra .L5
    .even
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Figure 5-6. Loop from Figure 5-3 compiled with optimizations. Branching 
instructions are in bold typeface.

    move.l %d0,%d7
    moveq.l #1,%d6
    clr.w %d3
    lea (10,%sp),%sp
    .even
.L8:
    clr.w %d2
    move.w %d3,%d0
    muls.w #5243,%d0
    clr.w %d0
    swap %d0
    move.w %d0,%d1
    asr.w #3,%d1
    move.w %d3,%d0
    moveq.l #15,%d4
    asr.w %d4,%d0
    sub.w %d0,%d1
    move.w %d3,%d4
    addq.w #1,%d4
    cmp.w %d2,%d1
    jble .L10
    lea (-200,%a6),%a1
    add.w %d3,%d3
    move.w %d1,%d0
    .even

.L12:
    move.w %d2,%a0
    add.l %a0,%a0
    move.w %d3,%d1
    sub.w %d2,%d1
    move.w %d1,(%a0,%a1.l)
    addq.w #1,%d2
    cmp.w %d2,%d0
    jbgt .L12
.L10:
    tst.w %d6
    jbne .L14
    moveq.l #1,%d6
    bra .L7
    .even
.L14:
    clr.w %d6
.L7:
    move.w %d4,%d3
    cmp.w #9999,%d3
    jble .L8
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Figure 5-7. Branches in non-FSM (top) and FSM (bottom) code for each 
cell processed.
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