
27

GTP (General Text Parser) Software for Text
Mining

Justin T. Giles, Ling Wo, Michael W. Berry
University of Tennessee, Knoxville, USA

CONTENTS
27.1 Introduction . 457
27.2 Model Facilitated by GTP . 458
27.3 GTP Usage and Files Generated . 459
27.4 Overview of GTP Options . 460
27.5 Query Processing with GTPQUERY . 466
27.6 Example . 466
27.7 Versions of GTP and GTPQUERY . 471
27.8 Code Evolution . 472
27.9 Future Work . 472

Acknowledgements . 472
References . 472

Because of the seemingly transparent nature of search engine design and use, there
is a tendency to forget the decisions and tradeoffs constantly made throughout the
design process, which ultimately affect the performance of any information retrieval
(IR) system. One of the major decisions is selecting and implementing any underly-
ing computational model within a single (but integrated) software environment. We
present the latest release an object-oriented (C++ and Java) software environment
called GTP (or General Text Parser) which can be used by both novice and experts
in information modeling to (i) parse text (single files or directories), (ii) construct
sparse matrix data structures (with choices of different term weighting strategies),
(iii) perform selected matrix decompositions for the representation of terms, docu-
ments, and queries in a reduced-rank vector space, and (iv) convert user-supplied
natural language queries into appropriate query vectors for cosine-based matching
against term and/or document vectors in that vector space.

27.1 Introduction

With the enormous growth in digital text-based information, the efficiency and ac-
curacy of search engines is a growing concern. In order to improve performance,

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 457

458 Statistical Data Mining and Knowledge Discovery

novices and experts in information modeling need ways to study and evaluate var-
ious information retrieval (IR) models. Limitations exist in large part due to the
absence of publicly available software capable of facilitating such modeling. To
address this void in modeling software, we present an object oriented software envi-
ronment called General Text Parser (GTP). GTP is public domain software, which is
freely available for anyone to download∗.

GTP provides users with the ability to parse ASCII text as well as other forms of
text (PostScript, PDF, etc.) via user-generated filters. For the more advanced user,
GTP is equipped to construct sparse matrix data structures (based on different term
weighting choices) and then perform matrix decompositions for the representation
of terms, documents, and queries in a reduced-rank vector space. The underlying IR
model facilitated by GTP is latent semantic indexing (or LSI) [3, 5], although with
little effort by the user, the LSI-specific modules may be removed and replaced by
an alternative model. Finally, GTP is capable of converting user-supplied natural
language queries, through the GTPQUERY module, into appropriate query vectors
for cosine-based matching against term and/or document vectors in the reduced-rank
vector space generated.

This paper does not discuss in great detail the theoretical development of vector-
space modeling and LSI (see [3, 4]). Section 27.2 provides a brief overview of LSI
in order to facilitate understanding of the processes of GTP. The general flow of
GTP is discussed in Section 27.3 with a follow-up section covering the details of
the several command-line arguments of GTP. A new addition to the GTP package is
GTPQUERY (Section 27.5), which is used for query processing. An example run of
GTP and GTPQUERY is illustrated in Section 27.6, and Section 27.7 presents the
various versions of GTP included the most recent Java release. Section 27.8 briefly
discusses the code evolution from Fortran to Java. Finally, Section 27.9 presents
future improvements to be made to GTP and GTPQUERY.

27.2 Model Facilitated by GTP

GTP is a software package that provides text parsing of small to large document
collections and matrix decomposition for use in information retrieval applications.
GTP has the ability to parse any document (using tag filters) and produce a list of
keys (or words that have been extracted by the parser). Beyond being a simple text
parser, GTP uses a vector-space approach to text modeling [6]. In using the vector-
space approach, the documents and queries are represented as vectors of the terms
parsed, basically creating a term-by-document matrix. The elements of this matrix
are frequencies (or weighted frequencies) of terms (rows) with respect to their cor-
responding documents (columns).

∗http://www.cs.utk.edu/∼lsi

GTP (General Text Parser) Software for Text Mining 459

The specific vector-space model exploited by GTP is latent semantic indexing
(LSI). LSI expands on the general vector-space approach by exploiting a low-rank
approximation of the term-by-document matrix [3, 6, 7]. LSI analyzes the global
patterns of terms and word usage, thus allowing documents with dissimilar terms to
have closely related vectors. To achieve this, LSI performs singular value decom-
position (SVD) on the term-by-document matrix [3], whose nonzero elements may
be weighted term frequencies. Term weighting is often used when performing the
SVD. Using term weights, instead of raw frequencies, may increase or decrease the
importance of terms (Section 27.4). Thus allowing the meaning of a document to
rise to the surface, instead of having the raw frequencies determine content.

27.3 GTP Usage and Files Generated

GTP is executed by the command gtp followed by a sequence of command line
arguments. The basic command looks like the following

gtp filename –c common words file –t temp dir

where filename is a file or directory of documents to be parsed, common words file
is the file containing the common words to be ignored, and temp dir is a directory
where temporary working files are stored. When this command sequence is used,
GTP traverses the directory structure(s) and inserts the files found into a red-black
tree. GTP then maneuvers through the red-black tree and parses each document
into keys. The only items generated by GTP at this point are the keys database,
RUN SUMMARY /LAST RUN (Figure 27.1), and uncompressed rawmatrix (Figure
27.2) files (see Figure 27.3 for the general flow of GTP processing and Table 1 for a
list of frequently generated files).

With the use of more options, GTP may produce several other files in varying
formats. The output file, created by specifying the −O option, is a binary file that
contains all the vector (term and document) and singular value information produced
by the SVD. The layout of the output file is as follows: header information consisting
of the number of terms parsed, number of documents encountered, and the number of
factors used; term vectors for all terms parsed; document vectors for all documents
parsed; singular values computed. A Perl script called readOutput is provided with
the software package, which displays the data in the output file in ASCII format.

The keys (keys.pag and keys.dir in C++; keys in Java) file is a database (dbm) of
all the terms that were parsed in the GTP run. Stored with the terms is the term id
that is a numeric value starting at 1 and incremented by 1 for each new term that is
parsed. So, the first term parsed has an id of 1. The next new term encountered has
an id of 2, and so on. The final information stored with the term and its id is the
global weight of the term. The global weight is calculated based on options specified
by the user, and takes into account all occurrences of the term in all the documents

460 Statistical Data Mining and Knowledge Discovery

File name Type Description (Section)
RUN SUMMARY ASCII Summary of options used (27.3)
LAST RUN ASCII Summary of options used on most

recent GTP run (27.3,27.5)
keys.dir/keys.pag - C++ DBM Database of keys generated (27.3,
keys - Java 27.5)
Output Binary Vector information generated by

SVD (27.3,27.5,27.6)
rawmatrix/rawmatrix.Z ASCII/ Raw term-by-document matrix

Compressed (27.3)
matrix.hb/matrix.hb.Z ASCII/ Contains the Harwell-Boeing

Compressed compressed matrix. (27.3)
TITLES ASCII List of document titles. (Table 2)
lao2 ASCII Summary of SVD calculation.
larv2 Binary File of SVD vectors. Use the

readVect script for viewing.
lalv2 Binary File of SVD vectors. Use the

readVect script for viewing.
nonz ASCII Total terms in the document

collection, including those not
parsed.

TABLE 27.1
Table 1: List of common files that GTP generates. A brief description of each
file is given along with a pointer (reference) to the section describing the file.

being parsed, not just a single document. Under Solaris and Linux, the database that
is used is Berkeley 4.3 BSD. Under Java, the World Wide Web Consortium (W3C)
Jigsaw database package is used.

The rawmatrix or rawmatrix.Z file contains the term-by-document matrix in raw
format (Figure 27.2). This file has the format of document number followed by term
id/weight pairs for each term in the document. For large document collections, this
file could be large, for this reason GTP compresses the rawmatrix by default. ma-
trix.hb is a file that holds the sparse term-by-document matrix in Harwell-Boeing
compressed format. The Harwell-Boeing format is also known as compressed col-
umn storage (CCS). CCS stores all nonzero elements (or frequencies) of a sparse
term-by-document matrix by traversing each column. Stored with the frequencies
are row and column pointers [3]. By default the matrix.hb file is compressed.

27.4 Overview of GTP Options

As GTP has grown into the sizable program (over 13,000 lines of code), it has in-
creased in the number of command line arguments to an almost unbearable point.
Even expert users have a difficult time keeping all the options straight. A wordy dia-
logue about each option would be as unbearable as the number of options available.

GTP (General Text Parser) Software for Text Mining 461

#
Variables set when keys database created (i.e. constants):
#
extra chars =
numbers = false
df = 1
gf = 1
local = tf
global = (null)
stop file = ../../etc/common words
nterms = 161
ndocs = 7
ncommon = 1000
minlen = 2
maxlen = 25
maxline = 10000
normal doc = no normalization
delimiter = end of file only
log file = none
temp dir = /a/berry/bay/homes/giles/linuxgtp orig/src3.1/run/tmp
keephb = true
keepkeys = false
decomposition= false
filter(s) =
../../filters/blfilter
../../filters/filter
#
Variables that can be changed when SVD is run
#
run name = Test Run 1 of gtp
file dir = /a/berry/bay/homes/giles/linuxgtp orig/src3.1/sample
nfact = 0
##
##Keys database created Sat Jul 13 16:19:12 EDT 2002

FIGURE 27.1
Example of the RUN SUMMARY and LAST RUN files. These files log all op-
tions the user requested at runtime. The LAST RUN file only contains options
relevant to the last run of GTP.

462 Statistical Data Mining and Knowledge Discovery

7 161
doc 1:
123 1.0000 80 3.0000 10 1.0000 30 1.0000 150 1.0000 144 1.0000 83 2.0000 89
1.0000 24 1.0000 53 1.0000 62 1.0000 9 1.0000 25 1.0000 60 2.0000 64 2.0000
51 1.0000 142 1.0000 110 1.0000 34 1.0000 140 1.0000 54 1.0000 159 1.0000
147 2.0000 66 1.0000 118 1.0000 155 1.0000 161 1.0000 129 1.0000 49 1.0000
153 1.0000 47 1.0000
doc2:

FIGURE 27.2
Example of the rawmatrix file, in which each record is composed of the docu-
ment number followed by term id/weight pairs of terms that exist in that docu-
ment.

With that in mind, a table has been created to explain each option and its dependen-
cies on other options in the command line (Table 2).

A few of the options deserve more explanation than what the table provides. The
-d and -g options can be a bit confusing to the new user. Both of these options
determine the threshold of the local and global raw frequencies of terms. If the -d
option is set at 2, this means that before a term is included in the keys database, it
must occur more than twice in the document. Consequently, if the value is set at 0,
then there is no minimum requirement for the frequency of a term in any particular
document. The -g option acts in a similar fashion, but reflects the minimum threshold
for the global frequency of a term. If the -g option is set at 2 then a term must occur
more than twice in an entire document collection before it is included in the keys
database. As with the -d option, if the value is set at 0, then there is no minimum
frequency requirement. For small document collections, it is strongly advised to
set both the local (-d) and global (-g) thresholds to 0 in order to capture all useful
terms.

Another option that can be confusing to a new user is the -w option, which in-
volves different term weighting schemes. Term weighting is especially important
for vector space IR models (such as LSI). The importance of terms may increase or
decrease depending on the type of weighting that is used. In determining which local
weighting to use, the vocabulary and word usage patterns of the document need to be
considered [3]. If the collection spans general topics (news feeds, magazine articles,
etc.), using raw term frequency (tf) would suffice. If the collection were small in
nature with few terms in the vocabulary, then binary frequencies would be the best
to use.

In determining the global weight, the likelihood that the collection will change
needs to be considered. If a collection is static, the inverse document frequency (idf)
is a good choice [3]. In general, the document collection will work well with some
weighting schemes and poorly with others. Any knowledge of the term distribu-
tion associated with a document collection before running GTP could be extremely
helpful in determining which weighting scheme to use.

GTP (General Text Parser) Software for Text Mining 463

Arg Additional Args. Description Dependencies
-help Summarize options.
-q Suppress progress

summary.
-h Create the Harwell-Boeing Required if using -z

compressed matrix. option.
Default is to not create it.

-u Keep the Harwell-Boeing -h
compressed matrix in an
uncompressed file (on
output) if the matrix is
created.

-N Include numbers as keys.
-D Do not create Unix Do not use if you are

compatible dbm key files to perform queries.
(keys.dir/keys.pag in C++;
keys in Java). Default is to
generate them.

-K Keep the keys file created
in the temporary directory
specified by the “-t
temp dir” argument.

-T Consider the first line of
each document (up to 200
characters) to be the title of
the document. Before this
line is parsed, it will be
written to the file TITLES
in the current directory.
Each title line in this file
will exist on it’s own line.

-s Normalize the document
length. This ensures a unit
length for columns in the
term-by-document matrix.

-m Int Set a new minimum key
length of int for the parser.

Ex: -m 5 The default minimum
length is 2.

-M Int Set a new maximum key
length of int for the parser.

Ex: -M 35 The default maximum
length is 20.

TABLE 27.2
Table 2: List of command-line options for GTP. Column 1 shows the argument.
Column 2 shows additional options for the specified argument as well as exam-
ples. Column 3 gives a brief description of each argument. Column 4 shows
which other arguments the current one depends on.

464 Statistical Data Mining and Knowledge Discovery

Table 2 continued...
-L Int Specify a new maximum

line length of int. If any
Ex: -L 1000 record being parsed

exceeds int characters, in
length before a carriage
return/line feed character,
the user is informed of this
and the portion of the
record that caused the
overrun is printed to the
screen. The default
maximum is 10,000.

-S Int Set the maximum number
of common words to use to

Ex: -S 2000 int. The default value is
1,000.

-d Int Change the threshold for
document frequency of any

Ex1: -d 0 term to int. Default is 1.
Ex2: -d 2

-g Int Change the threshold for
global frequency of any

Ex1: -g 0 term to int. Default is 1.
Ex2: -g 4

-e “Extra characters” Specify a string of
characters, each of which

Ex: “()$%” will be considered a valid
character, in addition to all
default characters, when
tokenizing keys.

-f Filter1 [opts] [filter2 [opts] Specify filters to pass each At least one filter
... filterN [opts]] file through before the must be specified if

parser looks at it. If a filter -f is used.
Ex1: -f zcat html filter has options, it needs to be
Ex2: -f zcat “grep surrounded by quotes.
computer”

-o Filename Specify that the key, id#
global frequency,

Ex: -o keystable document frequency, and
weight of all keys are to be
written to “filename”.

GTP (General Text Parser) Software for Text Mining 465

-B New delimiter Specify that a new Cannot be used if -x is
document delimiter is being used.

Ex: -B /newdoc/ needed. New delimiter
must be alone on a line in
the file and must match
exactly for GTP to
recognize it. It can be up
to 198 characters. Default
is a blank line.

-x Indicate that there is to be Cannot be used if -B
no delimiter other than the is being used.
end of file.

-w Local global Specify a custom
weighting scheme. Local

Ex: -w log entropy and global refer to local
and global weighting

or formulas. Local can be tf
(term frequency), log, or

Ex: -w entropy log binary. Global can be
normal, idf, idf2, or
entropy. Default local is tr
and global is not
calculated.

-R Run name Specify a name for the
current run of GTP.

Ex: -R “Medical Docs”
-z sdd Performs semi-discrete Cannot use if using

rank inner loop criteria decomposition. [3] -z svd1 ...;
tolerance -h

-z svd1 Performance singular value Cannot use if using
desc decomposition. [3, 5, 6] -z sdd ...;
lanmax -h
maxprs

-O Specify that the output file -z sdv1 ...
is to be in one binary file
for SVD. This is needed if
you are going to use
GTPQUERY.

-Z Specify if parse procedure -h
should be skipped so that -z svd1 ... or
an available matrix can be -z sdd ...
decomposed via SVD or
SDD.

466 Statistical Data Mining and Knowledge Discovery

27.5 Query Processing with GTPQUERY

GTPQUERY relies completely on files produced by a standard GTP run. Those files
are output, keys (or keys.pag and keys.dir in C++; keys in Java), and LAST RUN
(Section 27.3). Query processing will fail if these files are not in the working direc-
tory.

Query processing is performed by finding a cosine similarity measure between a
query vector and document vectors. Query vectors are generated by summing the
term vectors of terms in the query (the term vectors are generated in GTP) then
scaling each term vector dimension by the inverse of a corresponding singular value
[3, 5]. In this way, the query vector can be considered a pseudo-document. In other
words, the query vector mimics a document vector and may be projected into the
term-document space [7]. At this point, if the user opted to scale the query vector it
is done using the singular values produced by GTP. The scaling is done to emphasize
the more dominant LSI factors (or dimensions). Cosine similarity is then calculated
between the query vector and document vectors and the process is repeated if there
are more queries. Options for GTPQUERY are provided to assist in query parsing
and how the results are presented (Table 3).

The files that GTPQUERY produces are strictly results files. Each file has a pre-
fix of q result.#, where # is a number starting with 1. The number represents the
corresponding number id of the query that was performed. The file contains a list
of document ids and cosine similarity measures organized by most relevant to least
relevant (Figure 27.4).

27.6 Example

To illustrate the process of running GTP and GTPQUERY, a small example is pro-
vided.

1. The document collection to be parsed is one file with each document separated
by a blank line.

Numerical Libraries and The Grid

The Semantic Conference
Organizer Software

GTP: Software for Text Mining

GTP (General Text Parser) Software for Text Mining 467

Arg Add. Args. Description
-help Summarize options.
-S Scale the query vector by the singular

values before calculating cosine
similarity.

-n Int Set the number of factors to use. Default
is the value of nfact found in

Ex: -n 15 in LAST RUN file generated by GTP.
-u Float Set the upper threshold value for query

results returned. If the upper threshold
Ex: -u 0.75 is set to 0.75, then all query results

returned will be equal to or less than
0.75 (default is 1).

-l Float Set the lower threshold value for query
results returned. If the upper threshold

Ex: -l 0.25 is set to 0.25, then all query results
returned will be greater than or equal
to 0.25 (default is -1).

-k Int Set the number of results returned to
int (default is all).

Ex: -k 20
-f Filter1 [opts] [filter2 Specify filters to pass each file

[opts] ... filterN [opts]] through before the parser looks at
it. If a filter has options, it needs

Ex1: -f zcat html filter to be surrounded by quotes.
Ex2: -f zcat “grep
computer”

-B New delimiter Specify that a new query delimiter is
needed. New delimiter must be

Ex: -B /newquery/ alone on a line in the file and must
match exactly for the query processing
to recognize it. It can be up to 198
characters, and the default delimiter
is a single blank line. Cannot be used
in conjunction with the -x option.

-x Indicate that there is to be no
delimiter other than the end of file.
This cannot be used in conjunction
with the -B option.

TABLE 27.3
Table 3: List of command-line options for GTPQUERY. Column 1 shows the
arguments. Column 2 includes any additional arguments to be added to the
root argument. Column 3 displays a brief description of each argument. There
are no dependencies for each argument.

468 Statistical Data Mining and Knowledge Discovery

2. The GTP command is invoked using the command below. GTP provides the
user with messages regarding what it is currently processing.

gtp ../sample -c ./common words -t ./tmp -h -z svd1 sample -d 0 -g 0 -O -w log
entropy

Creating keys — Mon Jun 24 16:45:51 EDT 2002
Calculating term weights — Mon Jun 24 16:45:51 EDT 2002
Creating raw matrix — Mon Jun 24 16:45:51 EDT 2002
Creating Harwell-Boeing matrix — Mon Jun 24 16:45:51 EDT 2002
matrix size: 3 x 10 nelem: 11
Decompose Harwell-Boeing matrix — Mon Jun 24 16:45:51 EDT 2002
Using svd method – las2 Mon Jun 24 16:45:51 EDT 2002
time for gtp is 0.000000
time for decomposition is 0.000000
Total time is 0.000000
Writing summary to RUN SUMMARY — Mon Jun 24 16:45:51 EDT 2002

3 Once GTP has terminated, the keys and binary output files will have been
created. Those generated by this example may be seen below: Keys file:

Key ID Global Weight
Conference 1 1.000000
Grid 2 1.000000
Gtp 3 1.000000
Libraries 4 1.000000
Mining 5 1.000000
Numerical 6 1.000000
Organizer 7 1.000000
Semantic 8 1.000000
Software 9 0.369070
Text 10 1.000000

Output file (ASCII equivalent created using readOutput on
binary file produced):

Header
terms = 10
docs = 3
factors = 3
commentSize = 20
updatedTerms = 0 * not activated *
updatedDocs = 0 * not activated *
comment = Creating output file

GTP (General Text Parser) Software for Text Mining 469

Output file continued ...
Term Vectors
Term 0 (conference)

0 0.3908561766
1 -0.3573666215
2 -0.1973721683

Term 9 (text)
0 0.3908561766
1 0.3573666215
2 0.1973721683

Document Vectors
Document 0 (Numerical Libraries and the Grid)
0 0.0000000000
1 -0.4834610820
2 0.8753658533
...

Document 2 (GTP: Software for Text Mining)
0 0.7071067691
1 0.6189771295
2 0.3418586254

Singular Values
0 1.2537220716
1 1.2003111839
2 1.2003111839

4 A query may now be performed using the above keys and output files. The
queries used for this example are two queries in a single file, queryfile, delim-
ited by a single blank line.

Numerical Software

Text Mining Software

5 The command used for the query processing exploits scaling by the singular
values as the only optional command line argument.

gtpquery queryfile -c ./common words -S

Query 1 done.
Query 2 done.

470 Statistical Data Mining and Knowledge Discovery

FIGURE 27.3
Flowchart of GTP and GTPQUERY. Files produced are listed in parentheses.

Doc ID Cos. Similarity

50 0.975631
2 0.756432
14 0.500123
... ...

FIGURE 27.4
Query results file example.

GTP (General Text Parser) Software for Text Mining 471

6 Once the query processing is done, a file for each query processed will have
been generated. In this case, the files would be named q result.1 and q result.2.
Each file is shown below (only numerical values would be written, items in
parentheses are not included in the results files).

q result.1 (Numerical Software) q result.2 (Text Mining Software)
1 0.755929 (Numerical Libraries 3 1 (GTP: Software for

and the Grid) Text Mining)
3 0.654654 (GTP: Software for 1 5.04984e-17 (Numerical Libraries

Text Mining) and the Grid)
2 5.27521e-09 (The Semantic 2 -1.40715e-16 (The Semantic

Conference Organizer Conference Organizer
Software) Software)

This example illustrates using GTP as a means to parse documents and generate
factors using SVD. After running GTP, the example performed a query using files
generated by GTP. As stated before, GTP may be used in many other ways besides
parsing and performing decomposition. One may strictly use GTP as a means to
parse documents and generate a database of keys and frequencies. Titles of docu-
ments (first line of the document) may also be extracted.

27.7 Versions of GTP and GTPQUERY

There are several different versions of GTP that are supported. For Solaris and Linux
based machines there is a C++ version. Also provided for Solaris is a parallel ver-
sion based on MPI (Message Passing Interface) [9], which performs only the SVD
computations in parallel. A Java version has recently been released and has been
successfully executed on Solaris, Linux, and MacOS X platforms. The Java version
has not been tested on Windows as of yet. There has, however, been a successful
port of the Solaris C++ version to work with Borland Builder on the Windows plat-
form. The Windows version is not supported at this time. All versions include the
query-processing module except the parallel and Windows version.

There are no differences between the Solaris and Linux C++ versions. There are,
however, a few differences between the C++ and Java versions. The most obvious is
that Java is slower. Since Java uses a virtual machine, calculations are performed at
a much slower rate. This is most noticeable when running GTP on a large document
collection. As an example, GTP was run using the option to perform the SVD.
The document collection used was about 48MB in size, consisting of almost 5,000
documents and over 42,000 unique terms parsed. Time for completion using the
C++ version was about 560 seconds. Time for completion using the Java version
was about 1.5 hours. Possible solutions to fix this slowdown are discussed later
(Section 27.9). Secondly, the Java version is not capable of accepting user-generated

472 Statistical Data Mining and Knowledge Discovery

filters for the parsing process. The Java version does, however, provide an internal
HTML filter. The user can create his/her own filters in Java and incorporate them
into GTP.

27.8 Code Evolution

The original design of the GTP parser was based on C code and shell scripts origi-
nally distributed by Telcordia Technologies, Inc. (formerly Bellcore). The SVD code
was originally written in Fortran [2], converted to C [4], finally converted to C++ for
GTP. Hence, the GTP code to date is basically C code wrapped in C++. Since GTP
does not use genuine C++ code, true object-oriented techniques (OO) and features
were not incorporated. The Java version, which was converted from the C++ version,
solves some of the OO mistakes due to the numerous built-in Java classes and the
ease of use of these classes.

27.9 Future Work

What does the future hold for GTP? Currently in development is a graphical user
interface (GUI) front-end that is written in Java. This GUI will be compatible with
all versions of GTP (C++ and Java). The GUI has been a long awaited addition
to GTP and will solve many of the issues surrounding the multitude of command-
line options that users are plagued with currently. The GUI is currently slated to
control GTP runs (parsing and matrix decomposition) as well as controlling queries
and displaying results using the current query module [8].

Also being developed is the ability to remotely store files generated by a GTP
run as well as the ability to perform a query using the remotely stored files. This
is being done using IBP and Exnode technologies [1]. By using the remote storage
locations, or IBP depots, a user will have the ability to run GTP on large document
collections and not need to worry about local hard drive space restraints. These IBP
depots have the ability to allow users to store gigabytes of information for a limited
time.

Acknowledgements

This research was supported in part by National Science Foundation under grant no.
NSF- EIA-99-75015.

GTP (General Text Parser) Software for Text Mining 473

References

[1] M. Beck, T. Moore, and J. Plank. An End-to-End Approach to Globally Scal-
able Network Storage. In Proceedings of the ACM SIGCOMM 2002 Confer-
ence, Pittsburgh, PA, August 19-23, 2002.

[2] M.W. Berry. Multiprocessor Sparse SVD Algorithms and Applications. PhD
Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, October 1990.

[3] M. Berry and M. Browne. Understanding Search Engines: Mathematical
Modeling and Text Retrieval. SIAM, Philadelphia, PA, 1999.

[4] M.W. Berry, T. Do, G.O’Brien, V. Krishna, and S. Varadhan. SVDPACKC
(Version 1.0) User’s Guide. Technical Report No. CS-93-194, Department of
Computer Science, University of Tennessee, 1993.

[5] M.W. Berry, Z. Drmač, and E.R. Jessup. Matrices, Vector Spaces, and Infor-
mation Retrieval. SIAM Review 41(2):335-362, 1999.

[6] M.K. Hughey. Improved Query Matching Using kd-Trees: A Latent Semantic
Indexing Enhancement. Information Retrieval (2):287-302, 2000. Information
Retrieval (2):287-302, 2000.

[7] T.A. Letsche. Large-Scale Information Retrieval with Latent Semantic Index-
ing. Information Sciences (100):105-137, 1997.

[8] P.A. Lynn. Evolving the General Text Parser (GTP) Utility into a Usable Ap-
plication via Interface Design. MS Thesis, Department of Computer Science,
University of Tennessee, Knoxville, December 2002.

[9] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The
Complete Reference. MIT Press, Cambridge, MA, 1995.

