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Abstract— In this study, we use nonnegative matrix factoriza-
tion (NMF) and nonnegative matrix underapproximation (NMU)
approaches to generate feature vectors that can be used to
cluster Aviation Safety Reporting System (ASRS) documents
obtained from the Distributed National ASAP Archive (DNAA).
By preserving nonnegativity, both the NMF and NMU facilitate
a sum-of-parts representation of the underlying term usage
patterns in the ASRS document collection. Both the training
and test sets of ASRS documents are parsed and then factored
by both algorithms to produce a reduced-rank representations of
the entire document space. The resulting feature and coefficient
matrix factors are used to cluster ASRS documents so that
the (known) associated anomalies of training documents are
directly mapped to the feature vectors. Dominant features of
test documents are then used to generate anomaly relevance
scores for those documents. We demonstrate that the approximate
solution obtained by NMU using Lagrangrian duality can lead to
a better sum-of-parts representation and document classification
accuracy.

I. INTRODUCTION

Nonnegative matrix factorization (NMF) has been widely
used to approximate high dimensional nonnegative data sets.
Lee and Seung [1] demonstrated how NMF techniques can
be used to generate basis functions for image data that could
facilitate the identification and classification of objects. They
also showed how to use NMF for extracting concepts/topics
from unstructured text documents. In this study, the so-called
sum-of-parts representation offered by the NMF and related
factorizations is exploited for the classification of documents
from the Aviation Safety Reporting System (ASRS) collection.

Although many manuscripts have cited [1], NMF was first
introduced by Paatero and Tapper [2]. The NMF problem can
be simply stated as follows:

Given a nonnegative matrix A ∈ <m×n and a positive
integer k < min{m,n}, find nonnegative matrices W ∈
<m×k and H ∈ <k×n to minimize the functional

f(W,H) =
1
2
‖A−WH‖2F. (1)

The product WH is called a nonnegative matrix factor-
ization of A, although A is not necessarily equal to the
product WH. Hence, the product WH is an approximate
factorization of rank at most k. The optimal choice for the

rank k is problem dependent and in most cases chosen such
that k � min(m,n). Alternatively, the product WH can be
considered a compressed form of the data in A.

A key characteristic or property of NMF is the ability of
numerical methods that minimize expression (1) to generate
underlying features as basis vectors in W that can used for
object identification and classification. Without any negative
components in W and H, the NMF enables a non-subtractive
combination of parts to form a whole [1]. Features may be
parts of faces in image data, topics or clusters in textual data,
or specific absorption characteristics in hyperspectral data [3].
In this paper, we discuss an extension of the classic NMF
problem for the primary goal of improving feature extraction
and identification in text/document mining.

Important challenges in the numerical minimization of
expression (1) include the existence of local minima due to
the non-convexity of f(W,H) in both W and H, and the
non-uniqueness of its solution. Clearly any invertible matrix
D such that WD ≥ 0 and D−1H ≥ 0 generates an
equivalent solution (which is the case, for example, when
D has exactly one positive entry by row and by column).
In practice, the NMF has been shown to be quite useful
for text/data mining even with local minima. The resulting
features (basis vectors) provide desirable data compression and
classification capabilities.

Alternative formulations of the NMF problem have certainly
been documented [3]. For example, an information theoretic
formulation in [4] is based on the Kullback-Leibler divergence
of A from WH and the cost functions proposed in [5]
are based on Csiszár’s ϕ-divergence. The formulation in [6]
enforces constraints based on the Fisher linear discriminant
analysis and [7] uses a diagonal weight matrix Q in the fac-
torization model, AQ ≈WHQ, as an attempt to compensate
for feature redundancy. See [8] and [9] for other approaches
using cost functions.

To speed up convergence of Lee and Seung’s (standard)
NMF iteration, various alternative minimization strategies for
expression (1) have been suggested. In [10], the use of a
projected gradient bound-constrained optimization method was
shown to have better convergence properties than the standard
multiplicative update rule approach. However, the use of

978-1-4244-3828-0/09/$25.00 ©2009 IEEE 2782



certain auxiliary constraints in expression (1) may break down
the bound-constrained optimization assumption and thereby
limit the use of projected gradient methods. Acceleration
using an interior-point gradient method has been suggested in
[11], and a quasi-Newton optimization approach for updating
W and H, where negative values are replaced with small
positive ε parameter to enforce nonnegativity, is discussed
in [12]. Another technique, simple and yet efficient, with
nice convergence properties and based on a coordinate-descent
approach, was introduced in [13] and studied in details in
[14] (see also [15]). Finally, an overview of enhancements
to improve the convergence of the (standard) NMF algorithm
is available in [3].

Typically, W and H are initialized with random nonnega-
tive values to start the standard NMF algorithm. Another area
of NMF-related research has focused on alternate approaches
for initializing or seeding the algorithm. The goal, of course, is
to speed up convergence. In [16] spherical k-means clustering
is used to initialize W and in [17] singular vectors of A are
used for initialization and subsequent cost function reduction.

II. NMF ALGORITHM

As surveyed in [3], there are three general classes of NMF
algorithms: multiplicative update algorithms, gradient descent
algorithms, and alternating least squares algorithms. For this
study, we improve upon the most basic multiplicative update
method (first analyzed in [4]). This approach, based on a mean
squared error objective function, is illustrated below using
MATLAB R©array operator notation:

MULTIPLICATIVE UPDATE ALGORITHM FOR NMF
W = rand(m,k); % W initially random
H = rand(k,n); % H initially random
for i = 1 : maxiter

H = H .* (WTA) ./ (WTWH + ε);
W = W .* (AHT) ./ (WHHT + ε);

end

The parameter ε = 10−9 is added to avoid division by zero.
If this multiplicative update NMF algorithm does converges
to a stationary point, there is no guarantee that the stationary
point is a local minimum for the objective function [3]. If
the limit point to which the algorithm has converged lies
on the boundary of the feasible region, one cannot conclude
that it is, in fact, a stationary point. Modifications of the
Lee and Seung multiplicative update scheme that resolves
some of the convergence issues and guarantees convergence
to a stationary point are provided in [18], [15]. Vavasis
[19] has shown that NMF is NP-hard (see also [15]). In
a recent work [20], Gillis and Glineur consider an NMF-
like approximation problem (also NP-hard) whose solutions
can be generated using a Lagrangian relaxation technique.
This new approximation problem, referred to as nonnegative
matrix underapproximation (or NMU, first introduced in [21])
is outlined in the next section and compared with NMF for
text classification tasks in Section V.

III. NMU ALGORITHM

As discussed in [20] for a rank-1 NMF approximation
in expression (1), the first (dominant) singular triplets of
the matrix A provide optimal solutions for the nonnegative
(vector) factors W and H. Hence, an alternative approach
to produce a rank-k NMF would be to recursively generate
optimal rank-1 approximations (Wk,Hk), successively sub-
tracting each factor WkHk from A before determining a new
rank-1 approximation for the remainder A −WkHk. One
can immediately see that such an approach would generate
iterates (Wk,Hk) containing negative values. Therefore, [20]
adds an upper bound constraint WH ≤ A to the NMF,
to obtain a problem referred to as a nonnegative matrix
underapproximation (or NMU). For example, if (W1,H1) is
a rank-1 underapproximation to A, that is, W1H1 . A,
then R1 = A − W1H1 is nonnegative. R1 can then be
underapproximated by W2H2 . R2, if R2 = R1−W2H2,
and so on. After k steps, a rank-k underapproximation of A
is given by

W1H1 + W2H2 + · · ·+ WkHk =
[W1,W2, . . . ,Wk] [H1,H2, . . . ,Hk] = WH . A.

The formal NMU optimization problem is given by

min
W,H

‖A−WH‖2F, where

WH ≤ A and W,H ≥ 0.
(2)

Using a Lagrangian relaxation approach, Gillis and Glineur
[20] have shown that NMU iterates W and H can be obtained
by minimizing ‖(A − Λ) − WH‖2F, where Λ = [Λij]
contains the appropriate nonnegative Lagrange multipliers.
This problem is the same as NMF except that the matrix to
factorize (M−Λ) is not necessarily nonnegative; it is studied
in [15] where the multiplicative updates are generalized as
follows

H = H. ∗ (WTA)./(WTWH + WTΛ + ε);
W = W. ∗ (AHT)./(WHHT + ΛHT + ε).

Since optimal Lagrange multipliers should satisfy a comple-
mentary constraint Λij (A−WH)ij = 0, ∀i, j, the following
update rule for Λ between NMU iterates is suggested in [20]

Λ = max{0,Λ− µk(A−WH)}, µk → 0, (3)

where µk = ρkµ0 for ρ < 1 and appropriate initial µ0.

IV. DOCUMENT PARSING AND TERM WEIGHTING

The General Text Parsing (GTP) software environment [22]
(written in C++) was used to parse all the Aviation Safety
Reporting System (ASRS) documents for this preliminary
study. If A = [R|T] = [aij] defines the m × n term-by-
document matrix for factorization, then the submatrices R
and T represent training and test documents, respectively.
Each element or component aij of the matrix A defines a
weighted frequency at which term i occurs in document j.
We define aij = lijgi, where lij is the local weight for term
i occurring in document j and gi is the global weight for
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term i in the subcollection. Let fij be the number of times
(frequency) that term i appears in document j, and define
p̂ij = fij/

∑
j fij , i.e., the empirical probability of term i

appearing in document j. Using GTP, we deploy a common
log-entropy term weighting scheme whereby

lij = log(1 + fij) and gi = 1 + (
∑

j

p̂ij log(p̂ij))/ log n) .

By default, GTP requires that the global frequency of any term,
i.e.,

∑n
j=1 fij , be greater than 1 and that a term’s document

frequency (or number of documents containing that term) be
greater than 1 as well. No adjustments to these thresholds
were made in parsing the ASRS documents. A stoplist of 493
words1 was used by GTP to filter out unimportant terms.

Initial testing of NMF with ASRS documents with NMF
used as many as n = 21, 519 documents (see [23]). In
comparing the classification performance of NMF and NMU,
we use only the first n = 100 documents for this study. GTP
extracted exactly m = 733 terms from these documents and
all results were obtained using MATLAB R©Version 7.7.

V. NMF/NMU CLASSIFICATION

The classification of ASRS documents using NMF and
NMU follows the strategy first discussed in [23]. Let Hi

represent the i-th column of matrix H and define α, as a
the threshold on the relevance score or (target value) tij for
document i and anomaly/label j. Let δ, be a lower bound
(threshold) on the column elements of H such that all accepted
(non-filtered) elements in Hi are greater than or equal to (1−
δ)×max(Hi). This threshold will filter out the association of
features with both training (R) and test (T) documents. Let σ
denote the percentage of documents used to define the training
set (or number of columns of R). Table I briefly summarizes
the steps needed (see [23] for more details) to classify ASRS
documents using matrix factors (W,H) generated by NMF or
NMU. For all NMU-based classifications, the choices µ0 = 2
and ρ = 0.35 (see Equation (3)) yielded the best results.

A. Testing Methodology

The rank or number of columns of the feature matrix factor
W used to test our NMF and NMU models was k = 10.
Hence, the W and H matrix factors were 773 × 10 and
10 × 100, respectively. The percentage of ASRS documents
used for training (subset R) in our testing was 70% (i.e., σ =
.70). Hence, a random selection of 70 documents was used as
the training set (R) and the remaining 30 documents were used
for testing (T) our classifiers. In Step 1 of Table I we chose
δ = .30 for the columnwise pruning of the elements in the
coefficient matrix H. This parameter effectively determines
the number of features (among the k = 10 possible) that
any document (training or test) can be associated with. As
δ decreases, so does the sparsity of H [3].

The α parameter mentioned above is the prediction control
parameter that ultimately determines whether or not document

1See SMART’s english stoplist at ftp://ftp.cs.cornell.edu/
pub/smart/english.stop.

TABLE I
NMF- AND NMU-BASED CLASSIFIER FOR ASRS DOCUMENTS

.

Step Description
1 Filter elements of H given A ≈ WH;

for i = 1, . . . , n, determine ηi = max(Hi) and
zero out all values in Hi less than ηi × (1− δ).

2 Normalize the (new) filtered matrix H so that all column
sums are 1.

3 Generate a set of indices (integers) that will partition the
documents into the training (R) and test (T) subsets
based on the σ parameter.

4 Cluster the columns of H corresponding to documents
in the training set R by known anomalies (labels).

5 Sum the number of documents associated with each anomaly
per NMF/NMU feature (k of them), and determine the
number of anomaly j documents associated with feature i.

6 For each document in subset T, produce a score (or
probability) that the document is relevant to each anomaly.

7 Using α, produce the relevance score tij for (document i,
anomaly j) pairs; the score will yield a positive prediction if
tij > ρi × (1− α), where ρi = max(HT

i ).

i will be given label (anomaly) j. We note that the initial
matrix factors W and H (for NMF and NMU) are randomly
generated and will produce slightly different features (columns
of W) and coefficients (columns of H) per iteration2. After 5
iterations of the NMU multiplicative update rules mentioned
in Section III, the residual (‖A−WH‖F from Equation (2))
was reduced by two orders of magnitude (from 32.5 to 0.7).

B. Classification Results

Figure 1 contains the best3 Receiver Operating Character-
istic (ROC) curves (true positive rate versus false positive
rate) for the NMF and NMU classifiers, when applied to test
ASRS documents (30 out of a 100). Among the 14 anomaly
categories spanned by the first 100 ASRS documents, we see
that the rank-10 NMU classifier achieved better classification
accuracies than the rank-10 NMF classifier for 9 of the
categories (see red entries of Table II), which was already
obtaining very competitive results on this dataset. The fourteen
(of the twenty-two) event types (or anomaly descriptions)
listed in Table II were obtained from the Distributed National
ASAP Archive (DNAA) maintained by the University of
Texas Human Factors Research Project4. As the specificity
of some topics in the ASRS collection can widely vary [23],
it is not surprising to observe poor performance for both
classifiers with a few anomaly categories (e.g., 2, 6, 7, and
22). Additional experiments with a larger numbers of features
(k > 10) and documents (n > 100) should produce NMF
and NMU models that better capture the diversity of contexts
described by those events.

VI. SUMMARY AND FUTURE WORK

Whereas nonnegative matrix factorization (NMF) has been
previously shown to be a viable alternative for automated

2Only five iterations were used in our preliminary study.
3After running each classifier ten times with different (random) training

and test document sets R and T, respectively.
4See http://homepage.psy.utexas.edu/HomePage/Group/

HelmreichLAB.
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Fig. 1. NMF and NMU classification accuracies (areas under ROC curve)
for 14 of the 22 DNAA anomaly categories.

TABLE II
ROC AREAS VERSUS DNAA EVENT TYPES FOR SELECTED ANOMALIES

ROC Area
Anomaly DNAA Event Type NMF NMU

1 Airworthiness Issue .8621 .9655
2 Noncompliance (policy/proc.) .3971 .5502
5 Incursion (collision hazard) .6173 .7037
6 Departure Problem .5566 .4615
7 Altitude Deviation .5600 .4000
8 Course Deviation .3580 .7531

10 Uncommanded (loss of control) .6071 .6071
12 Traffic Proximity Event .5650 .5750
13 Weather Issue .6964 .7321
14 Airspace Deviation .7778 .4815
18 Aircraft Damage/Encounter .4286 .6249
19 Aircraft Malfunction Event .5556 .3086
21 Illness/Injury Event .8571 .8750
22 Security Concern/Threat .2759 .3103

document classification problems, the prospects for nonneg-
ative matrix underapproximation (NMU) are even better. This
study demonstrated how NMU can be used to both learn
and assign (anomaly) labels for documents from the Aviation
Safety Reporting System (ASRS). Of course, there is room
for improvement in both the performance and interpretabil-
ity of NMF- and NMU-based text classifiers. In particular,
the summarization of anomalies (document classes) using k
NMF/NMU features needs further work. Alternatives to the
filtering of elements of the coefficient matrix H (based on
the parameter δ) could be the use of sparsity or smoothing
constraints (see [3]) on either (or both) factors W and H.
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[15] N. Gillis and F. Glineur, “Nonnegative Factorization and The Maximum
Edge Biclique Problem,” CORE Discussion paper, no. 64, 2008.

[16] S. Wild, J. Curry, and A. Dougherty, “Motivating Non-Negative Matrix
Factorizations,” in Proceedings of the Eighth SIAM Conference on
Applied Linear Algebra, July 15-19. Williamsburg, VA: SIAM, 2003.

[17] C. Boutsidis and E. Gallopoulos, “SVD based initialization: A head start
for nonnegative matrix factorization,” Journal of Pattern Recognition,
vol. 41, pp. 1350–1362, 2008.

[18] C.-J. Lin, “On the Convergence of Multiplicative Update Algorithms
for Nonnegative Matrix Factorization,” in IEEE Transactions on Neural
Networks, 2007.

[19] S. Vavasis, “On the Complexity of Nonnegative Matrix Factorization,”
2007, preprint.

[20] N. Gillis and F. Glineur, “Using Underapproximations for Sparse Non-
negative Matrix Factorization,” CORE Discussion paper, no. 2009/6,
2009.

[21] N. Gillis, “Approximation et sous-approximation de matrices par factori-
sation positive: algorithmes, complexité et applications,” Master’s thesis,
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